scholarly journals Hydrological Effects of Prefabricated Permeable Pavements on Parking Lots

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Kechang Dai ◽  
Weixing Liu ◽  
Xiaotian Shui ◽  
Dafang Fu ◽  
Chris Zevenbergen ◽  
...  

Permeable pavements can infiltrate and reduce stormwater runoff in parking lots, but issues around long construction periods and proper maintenance still required proper research and further understanding. The application of precast concrete can help to solve this. In this study, precast concrete components were applied to the design of permeable pavements to form prefabricated permeable pavements. The laboratory study is one of the first to examine the hydrological effect of prefabricated pervious pavements in parking lots. Four kinds of permeable pavements were designed and manufactured. These had different materials (natural sand-gravel, medium sand) which comprised the leveling layer or different assembly forms of precast concrete at the base. Three scenarios of rainfall intensity (0.5, 1, and 2 mm/min) and three rainfall intervals (one, three, and seven days) were simulated using rainfall simulators. The initial runoff time, runoff coefficient, and runoff control rate of each permeable pavement were investigated during the process of simulating. Results showed that the initial runoff time was no earlier than 42 min, the maximum runoff coefficient was 0.52, and the minimum runoff control rate was 47.7% within the rainfall intensity of 2 mm/min. The initial runoff time of each permeable pavement was no earlier than 36 min when the rainfall interval was one day, whereas, the maximum runoff coefficient was 0.64, and the average runoff control rate was 41.5%. The leveling layer material had a greater impact on the hydrological effect of permeable pavements, while the assembly form of precast concrete had no significant effect. Compared with natural sand-gravel, when the leveling layer was medium sand, the runoff generation was advanced by 4.5–7.8 min under different rainfall intensities, and 7–10 min under different rainfall intervals. The maximum runoff coefficient increased with about 14.6% when the rainfall interval was one day. Among four kinds of permeable pavements, the type I permeable pavement had the best runoff regulation performance. The results revealed that all prefabricated permeable pavements used in this study had good runoff control performance, and this design idea proved to be an alternative for the future design of permeable pavements.

1994 ◽  
Vol 29 (1-2) ◽  
pp. 303-310 ◽  
Author(s):  
Kazuyuki Higuchi ◽  
Masahiro Maeda ◽  
Yasuyuki Shintani

The Tokyo Metropolitan Government has planned future flood control for a rainfall intensity of 100 mm/hr, which corresponds to a return period of 70 years, and a runoff coefficient of 0.8. Considering that the realization of this plan requires a long construction period and high construction costs, the decision was made to proceed by stages. In the first stage, the improvement of the facilities will be based on a rainfall intensity of 75 mm/hr (presently 50 mm/hr), corresponding to a return period of 17 years, and a runoff coefficient of 0.8. In the next stage the facilities will be improved to accommodate a rainfall intensity of 100 mm/hr. In the Nakano and Suginami regions, which suffer frequently from flooding, the plan of improvement based on a rainfall intensity of 75 mm/hr is being implemented before other areas. This facility will be used as a storage sewer for the time being. The Wada-Yayoi Trunk Sewer, as a project of this plan, will have a diameter of 8 m and a 50 m earth cover. This trunk sewer will be constructed considering several constraints. To resolve these problems, hydraulic experiments as well as an inventory study have been carried out. A large drop shaft for the trunk sewer is under construction.


2018 ◽  
Vol 46 (2) ◽  
pp. 553-562 ◽  
Author(s):  
Ataollah KAVIAN ◽  
Leila GHOLAMI ◽  
Maziar MOHAMMADI ◽  
Velibor SPALEVIC ◽  
Moghadeseh FALAH SORAKI

Soil erosion is one of the key challenges in soil and water conservation. Vegetation that covers soil and organic and inorganic mulch is very useful for the control of erosion processes. This study examined treatment with wheat residual (as agriculture mulch) on infiltration, time to runoff, runoff coefficient, sediment concentration and soil erosion processes. The study has been conducted for sandy-loam soil taken from summer rangeland (Northern Iran) with simulated rainfall intensities of 50 and 100 mm h-1. The experiment was conducted in slopes of 30% in three replications with two amounts of wheat residual of 50 and 90 %. The results showed that conservation percent of soil erosion for wheat residual 50 and 90% was 61.68 and 73.25%, respectively (in rainfall intensity of 50 mm h-1). Also, the conservation percent of soil erosion for wheat residual of 50 and 90% cover was 70.68 and 90.55, respectively (in rainfall intensity of 100 mm h-1). It was concluded that the conservation treatments could reduce runoff coefficient, sediment concentration and soil erosion and increase the time to runoff and infiltration coefficient. This effect was significant on time for infiltration, sediment concentration and soil erosion variables (R2=0.99), time to runoff and runoff coefficient variables (R2=0.95). The interaction effects of rainfall intensity and soil conservation was significant for sediment concentration and soil erosion variables (R2=0.99).


2018 ◽  
Vol 229 ◽  
pp. 04008
Author(s):  
Imam Priambodo ◽  
Mangapul P. Tambunan ◽  
Eko Kusratmoko

Jakarta, as the capital city of Indonesia, is one of the most flooded areas in Indonesia. The floods occurred annually and heavy floods usually occurred once in a few years. This paper address the geographic distribution of floods and statistical analysis of the floods causes by using rain intensity, tidal height, elevation, and floods occurrence as the parameters. This research was conducted in Angke (Kapuk) and Penjaringan Districts, located in Northern Jakarta where the floods usually occur. The result shows that rainfall intensity, remaining water inundation from the previous flood, and land runoff coefficient as the key factors of flooding in these areas.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lijun Hou ◽  
Yuan Wang ◽  
Fengchun Shen ◽  
Ming Lei ◽  
Xiang Wang ◽  
...  

The self-designed indoor simulated rainfall device was used to rain on five types of pavement structures with 4 types of rainfall intensity (2.5 mm/min, 3.4 mm/min, 4.6 mm/min, and 5.5 mm/min). The effect of rainfall intensity on the surface runoff, the relation between the subgrade soil moisture content changes, and the influence of initial soil water content on rain infiltration rate are studied. The test results show that the surface runoff coefficient of densely asphalted pavement is greater than 90% in drainage pavements and it has little influence on the reducing and hysteresis of the flood peak. The surface runoff coefficient of large-void asphalt pavement (permeable) is less than 40%. Although the large-void asphalt pavement (permeable) can reduce a small amount of surface runoff, it has no obvious effect on the reduction and hysteresis of the flood peak. In semipermeable pavement, with the increasing of the thickness of base (graded gravel), the surface runoff coefficient decreases at different rainfall intensities, parts of the surface runoff are reduced, and the arrival of flood peaks is delayed. In permeable roads, almost no surface runoff occurred. As time continued, the soil moisture content quickly reached a saturated state and presented a stable infiltration situation under the action of gravity and the gradient of soil water suction. As the initial moisture content increases, the initial infiltration rate decreases and the time to reach a stable infiltration rate becomes shorter. The drier the soil, the greater the initial infiltration rate and the higher the soil moisture content after infiltration stabilization. Permeable roads can greatly alleviate the pressure of urban drainage and reduce the risk of storms and floods.


2020 ◽  
Vol 10 (1) ◽  
pp. 12-17
Author(s):  
Dawod Rasooli Keya ◽  
Tariq H. Karim

Simulating rainfall is one of the valuable methods of measuring hydrological data and soil erosion processes. Rapid evaluation, high repeatability, and low cost are the reasons of using rain simulators. In this study, a rain simulator was constructed in dimensions of 3.0 × 3.0 × 3.0 m and it was protected on three sides by a plastic cover. An inclined table was used to create slopping surfaces of 5, 10, and 15%. Microplots were used in the dimensions of 0.2 × 0.4 × 1.0 m to collect and measure direct runoff in a bucket outside the device. Nozzles were calibrated to produce two different rainfall intensities 10 and 20 mmh−1 using sprinkler Model 5B at 8 and 12 psi, respectively. Furthermore, three different soil types, namely, clay loam (CL), silty clay (SC) loam, and SC were examined. In general, it was observed that with increasing the rainfall intensity and slope, the rate of runoff and sedimentation increase. SC soil at 15% slop offered the highest performance under the intensity of 20 mmh−1. SC and the CL soils produced the highest and lowest runoff coefficients, respectively. The CL soil produced the highest soil loss (1 kgm2 at 15% and I = 20 mmh−1). Further, it was concluded that a significant change (an average increase of 53%) in soil loss can be achieved as the rainfall intensity increased from 10 to 20 mmh−1.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2081 ◽  
Author(s):  
Jaerock Park ◽  
Jaehyun Park ◽  
Jonghyun Cheon ◽  
Jaehyuk Lee ◽  
Hyunsuk Shin

Impermeable materials are used for parking lots at apartment complexes and large stores which are concentrated in urban areas. These materials increase the amount of surface runoff by blocking infiltration, resulting in flood damage, dry stream phenomena in rivers in urban watersheds, and the depletion of ground water. In this study, a parking lot plot was constructed to quantitatively evaluate the efficiency of pavements using various materials (impermeable concrete, permeable concrete, and permeable block pavement). Four scenarios of rainfall intensity were simulated using a rainfall simulator within each plot (36 mm h−1, 48 mm h−1, 60 mm h−1, 72 mm h−1). The flow was observed by monitoring the system with a bucket flow meter. The efficiency and flow characteristics of the permeable concrete and block pavement were analyzed. The results were used to calculate the ratio of the surface flow to the infiltrating flow between impermeable and permeable pavements. The permeable concrete had a ratio of 1:0.9, and the permeable block pavement had a ratio of 1:0.58.


2021 ◽  
Vol 13 (9) ◽  
pp. 4925
Author(s):  
Rutger de Graaf-van Dinther ◽  
Anne Leskens ◽  
Ted Veldkamp ◽  
Jeroen Kluck ◽  
Floris Boogaard

Climate change and changing land use challenge the livability and flood safety of Dutch cities. One option cities have to become more climate-proof is to increase infiltration of stormwater into soil through permeable pavement and thus reduce discharge of stormwater into sewer systems. To analyze the market receptivity for permeable pavements in the Netherlands, this article focuses on the perception of end-users towards key transition factors in the infrastructure transformation processes. Market receptivity was studied on two levels: (1) on the system level, by analyzing 20 key factors in the Dutch urban water sector that enable wider application of permeable pavements; and (2) on the technology level, by analyzing 12 key factors that explain why decision makers select permeable pavements or not. Results show that trust between cooperating partners was perceived as the system level key factor that needs to be improved most to facilitate the wider uptake of permeable pavements. Additionally, the association of end-users with permeable pavement, particularly their willingness to apply these technologies and their understanding of what kinds of benefits these technologies could bring, was regarded the most important receptivity attribute. On the technology level, the reliability of permeable pavement was regarded as the most important end-user consideration for selecting this technology.


2021 ◽  
Vol 69 (3) ◽  
pp. 332-346
Author(s):  
Larissa Virgínia da Silva Ribas ◽  
Artur Paiva Coutinho ◽  
Laurent Lassabatere ◽  
Severino Martins dos Santos Neto ◽  
Suzana Maria Gico Lima Montenegro ◽  
...  

Abstract The permeable pavement is a compensatory drainage technique for urban waters that aims to control runoff and to ensure ideal hydrological conditions. This work had as main objectives to evaluate the infiltration capacity of a permeable pavement (PP) at real scale, through analytical and numerical modeling. It relies on water infiltration experiments and related modeling for the hydrodynamic characterization of the coating layer (saturated hydraulic conductivity, Ks , and sorptivity, S). A large panel of analytical and numerical models was considered, and several estimates were obtained. Then, the criteria for the evaluation of the maintenance requirement of the permeable pavements were computed for all the Ks -estimates considering the NCRS standards (assessment of permeability levels). The results indicated nice fits and accurate estimates for both the saturated hydraulic conductivity and the sorptivity. However, the Ks -estimates depended on the considered model and led to contrasting results in terms of classification. For 8 of the 9 models, the value of the Ks -estimate leads to the classification of “Group A” of the NCRS soil classification, meaning a very permeable material. In contrasts, the last method (numerical inverse modeling) classified the permeable pavement as “Group D”, i.e., soils with low permeability. Those results show the importance of the selection of characterization methods regarding the assessment of the hydrological classification of permeable pavements.


2015 ◽  
Vol 16 (1) ◽  
pp. 1
Author(s):  
Destianingrum Ratna P ◽  
M. Bayu Rizky Prayoga ◽  
Ardila Yananto

Intisari  Permasalahan sumberdaya air dari hari ke hari semakin memburuk, baik kualitas maupun kuantitas air. DAS sebagai wadah dari berbagai komponen biosfer yang saling berinteraksi memegang peranan yang penting dalam siklus hidrologi dan fungsi penyediaan air. Berbagai macam model hidrologi telah dikembangkan, Model-model tersebut bisa digunakan untuk memecahkan permasalahan sumberdaya air tersebut. Salah satu model yang bisa digunakan adalah model rasional yang terdapat dalam Waterhsed Modeling System (WMS). Tujuan dari penelitian ini adalah untuk melakukan ekstraksi karakteristik DAS dan mengestimasi nilai debit puncak DAS Ciliwung Hulu berdasarkan nilai curah hujan beberapa kala ulang dengan menggunakan Watershed Modelling System. Dari hasil penelitian didapatkan bahwa karakteristik DAS yang dapat diekstraksi dengan menggunakan WMS adalah luas DAS, panjang sungai utama, kemiringan DAS, dan kemiringan aliran  sungai. Nilai koefisien aliran permukaan DAS Ciliwung Hulu adalah sebesar  0,72. Nilai intensitas hujan untuk kala ulang 2 tahun sebesar 117 mm/jam, kala ulang 5 tahun sebesar 135 mm/jam, kala ulang 10 tahun sebesar 143 mm/jam, kala ulang 25 tahun sebesar 152 mm/jam, kala ulang 50 tahun sebesar 157 mm/jam, dan kala ulang 100 tahun sebesar 162 mm/jam. Untuk nilai estimasi debit puncak di DAS Ciliwung Hulu, untuk kala ulang 2 tahun sebesar 735, 588 m3/detik, untuk kala ulang 5 tahun sebesar 852,713 m3/detik, untuk kala ulang 10 tahun sebesar 904,363 m3/detik, untuk kala ulang 25 tahun sebesar 959,448 m3/detik, untuk kala ulang 50 tahun sebesar 992,448 m3/detik dan untuk kala ulang 100 tahun sebesar 1.023,313 m3/detik.Abstract  Water resources problems are getting worse from by the day, both the quality and quantity of water. Watershed as a container of various components of the interacting biosphere is playing an important role in the hydrological cycle and water supply functions. Various kinds of hydrological models have been developed. The models can be used to help solving the water resources problems. One of models that can be used are contained in Watershed Modeling System (WMS) is Rational Method. The purpose of this study was to perform the extraction of watershed characteristics and estimate the peak discharge in Ciliwung Hulu Watershed based on the value of rainfall in some return period by using the Watershed Modeling System. The results of study show that the characteristics of the watershed that can be extracted by using WMS are watershed area, main stream length, the slope of the watershed, and the slope of the river. Runoff coefficient value of Ciliwung Hulu Watershed is 0,72. Rainfall intensity value for 2-year return period is 117 mm/h, when the 5-year return period is 135 mm/h, when the 10-year return period is 143 mm/h, when the 25-year return period is 152 mm/h, when the 50-year return periods 157 mm/h, and when 100-year return period is 162 mm/hour. For the estimated value of the peak discharge in Ciliwung Hulu watershed for 2-year return period amounted to 735,588 m3/sec, for 5-year return period amounted to 852,713 m3/sec, for a 10-year return period amounted to 904,363 m3/sec, for a 25 year return period amounted to 959,448 m3/sec, for 50-year return period amounted to 992,448 m3/sec and for 100 years return period amounted to 1023,313 m3/sec.


Sign in / Sign up

Export Citation Format

Share Document