Faculty Opinions recommendation of An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis.

Author(s):  
Ivo Feussner
2013 ◽  
Vol 162 (4) ◽  
pp. 2056-2066 ◽  
Author(s):  
Peiyong Xin ◽  
Jijun Yan ◽  
Jinshi Fan ◽  
Jinfang Chu ◽  
Cunyu Yan

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Shanyong Yi ◽  
Qianwen Lin ◽  
Xuejia Zhang ◽  
Jing Wang ◽  
Yuanyuan Miao ◽  
...  

Real-time quantitative polymerase chain reaction (RT-qPCR) has been widely applied in gene expression and transcription abundance analysis because of its high sensitivity, good repeatability, and strong specificity. Selection of relatively stable reference genes is a precondition in order to obtain the reliable analysis results. However, little is known about evaluation of a set of reference genes through scientific experiments in Rubia plants. Here, 15 candidate reference genes were selected from R. yunnanensis transcriptome database and analyzed under abiotic stresses, hormone treatments, and different tissues. Among these 15 candidate reference genes, heterogeneous nuclear ribonucleoprotein (hnRNP), TATA binding protein (TBP), ribosomal protein L5 (RPL5), malate dehydrogenase (MDH), and elongation factor 1-alpha (EF-1α) were indicated as the five most stable reference genes by four statistical programs (geNorm, NormFinder, BestKeeper, and RefFinder). Ultimately, the validity of reference genes was confirmed by normalizing the expression of o-succinylbenzoate-CoA ligase (OSBL) and isochorismate synthase (ICS) involved in the anthraquinone biosynthesis pathway in different tissues and hormone treatments. Meanwhile, four other putative genes involved in the anthraquinone biosynthesis pathway were also normalized with the selected reference genes, which showed similar expression levels with those given by transcriptome data. This work is the first research that aims at a systematic validation on the stability of reference genes selected from R. yunnanensis transcriptome data and will be conducive to analyze gene expression in R. yunnanensis or other Rubia species.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuxin Liu ◽  
Zheng Wei ◽  
Jing Zhou ◽  
Zhanfang Ma

AbstractSerodiagnosis with a single quantification method suffers from high false positive/negative rates. In this study, a three-channel platform with an accessional instrumented system was constructed for simultaneous electrochemical, luminescent, and photothermal quantification of H2S, a bio-indicator for acute pancreatitis (AP) diagnosis. Utilizing the specific reaction between platform and H2S, the three-channel platform showed high sensitivity and selectivity in the biological H2S concentration range. The three-channel platform was also feasible for identifying the difference in the plasma H2S concentrations of AP and normal mice. More importantly, the precision of AP serodiagnosis was significantly improved (>99.0%) using the three-signal method based on the three-channel platform and an optimized threshold, which was clearly higher than that of the single- or two-signal methods (79.5%–94.1%). Our study highlights the importance of constructing a multichannel platform for the simultaneous multi-signal quantification of bio-indicators, and provides rigorous ways to improve the precision of medical serodiagnosis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jianyu Zhu ◽  
Leina Dou ◽  
Shibei Shao ◽  
Jiaqian Kou ◽  
Xuezhi Yu ◽  
...  

Mushrooms containing Amanita peptide toxins are the major cause of mushroom poisoning, and lead to approximately 90% of deaths. Phallotoxins are the fastest toxin causing poisoning among Amanita peptide toxins. Thus, it is imperative to construct a highly sensitive quantification method for the rapid diagnosis of mushroom poisoning. In this study, we established a highly sensitive and automated magnetic bead (MB)-based chemiluminescence immunoassay (CLIA) for the early, rapid diagnosis of mushroom poisoning. The limits of detection (LODs) for phallotoxins were 0.010 ng/ml in human serum and 0.009 ng/ml in human urine. Recoveries ranged from 81.6 to 95.6% with a coefficient of variation <12.9%. Analysis of Amanita phalloides samples by the automated MB-based CLIA was in accordance with that of HPLC-MS/MS. The advantages the MB-based CLIA, high sensitivity, repeatability, and stability, were due to the use of MBs as immune carriers, chemiluminescence as a detection signal, and an integrated device to automate the whole process. Therefore, the proposed automated MB-based CLIA is a promising option for the early and rapid clinical diagnosis of mushroom poisoning.


1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


Author(s):  
Kazumichi Ogura ◽  
Michael M. Kersker

Backscattered electron (BE) images of GaAs/AlGaAs super lattice structures were observed with an ultra high resolution (UHR) SEM JSM-890 with an ultra high sensitivity BE detector. Three different types of super lattice structures of GaAs/AlGaAs were examined. Each GaAs/AlGaAs wafer was cleaved by a razor after it was heated for approximately 1 minute and its crosssectional plane was observed.First, a multi-layer structure of GaAs (100nm)/AlGaAs (lOOnm) where A1 content was successively changed from 0.4 to 0.03 was observed. Figures 1 (a) and (b) are BE images taken at an accelerating voltage of 15kV with an electron beam current of 20pA. Figure 1 (c) is a sketch of this multi-layer structure corresponding to the BE images. The various layers are clearly observed. The differences in A1 content between A1 0.35 Ga 0.65 As, A1 0.4 Ga 0.6 As, and A1 0.31 Ga 0.69 As were clearly observed in the contrast of the BE image.


Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Author(s):  
T. M. Weatherby ◽  
P.H. Lenz

Crustaceans, as well as other arthropods, are covered with sensory setae and hairs, including mechanoand chemosensory sensillae with a ciliary origin. Calanoid copepods are small planktonic crustaceans forming a major link in marine food webs. In conjunction with behavioral and physiological studies of the antennae of calanoids, we undertook the ultrastructural characterization of sensory setae on the antennae of Pleuromamma xiphias.Distal mechanoreceptive setae exhibit exceptional behavioral and physiological performance characteristics: high sensitivity (<10 nm displacements), fast reaction times (<1 msec latency) and phase locking to high frequencies (1-2 kHz). Unusual structural features of the mechanoreceptors are likely to be related to their physiological sensitivity. These features include a large number (up to 3000) of microtubules in each sensory cell dendrite, arising from or anchored to electron dense rods associated with the ciliary basal body microtubule doublets. The microtubules are arranged in a regular array, with bridges between and within rows. These bundles of microtubules extend far into each mechanoreceptive seta and terminate in a staggered fashion along the dendritic membrane, contacting a large membrane surface area and providing a large potential site of mechanotransduction.


Author(s):  
F. Ouyang ◽  
D. A. Ray ◽  
O. L. Krivanek

Electron backscattering Kikuchi diffraction patterns (BKDP) reveal useful information about the structure and orientation of crystals under study. With the well focused electron beam in a scanning electron microscope (SEM), one can use BKDP as a microanalysis tool. BKDPs have been recorded in SEMs using a phosphor screen coupled to an intensified TV camera through a lens system, and by photographic negatives. With the development of fiber-optically coupled slow scan CCD (SSC) cameras for electron beam imaging, one can take advantage of their high sensitivity and wide dynamic range for observing BKDP in SEM.We have used the Gatan 690 SSC camera to observe backscattering patterns in a JEOL JSM-840A SEM. The CCD sensor has an active area of 13.25 mm × 8.83 mm and 576 × 384 pixels. The camera head, which consists of a single crystal YAG scintillator fiber optically coupled to the CCD chip, is located inside the SEM specimen chamber. The whole camera head is cooled to about -30°C by a Peltier cooler, which permits long integration times (up to 100 seconds).


Author(s):  
W.J. de Ruijter ◽  
M.R. McCartney ◽  
David J. Smith ◽  
J.K. Weiss

Further advances in resolution enhancement of transmission electron microscopes can be expected from digital processing of image data recorded with slow-scan CCD cameras. Image recording with these new cameras is essential because of their high sensitivity, extreme linearity and negligible geometric distortion. Furthermore, digital image acquisition allows for on-line processing which yields virtually immediate reconstruction results. At present, the most promising techniques for exit-surface wave reconstruction are electron holography and the recently proposed focal variation method. The latter method is based on image processing applied to a series of images recorded at equally spaced defocus.Exit-surface wave reconstruction using the focal variation method as proposed by Van Dyck and Op de Beeck proceeds in two stages. First, the complex image wave is retrieved by data extraction from a parabola situated in three-dimensional Fourier space. Then the objective lens spherical aberration, astigmatism and defocus are corrected by simply dividing the image wave by the wave aberration function calculated with the appropriate objective lens aberration coefficients which yields the exit-surface wave.


Sign in / Sign up

Export Citation Format

Share Document