scholarly journals Understanding the Early Evolution of COVID-19 Disease Spread Using Mathematical Model and Machine Learning Approaches

Author(s):  
Samuel Oladimeji Sowol ◽  
Abdullahi Adinoyi Ibrahim ◽  
Daouda Sangare ◽  
Ismaila Omeiza Ibrahim ◽  
Francis I. Johnson

In response to the global COVID-19 pandemic, this work aims to understand the early time evolution and the spread of the disease outbreak with a data driven approach. To this effect, we applied Susceptible- Infective-Recovered/Removed (SIR) epidemiological model on the disease. Additionally, we used the Machine Learning linear regression model on the historical COVID-19 data to predict the earlier stage of the disease. The evolution of the disease spread with the Mathematical SIR model and Machine Learning regression model for time series forecasting of the COVID-19 data without, and with lags and trends, was able to capture the early spread of the disease. Consequently, we suggest that if using a more advanced epidemiological model, and sophisticated machine learning regression models on the COVID-19 data, we can understand, as well as predict the long time evolution of the disease spread.

Author(s):  
Magdalena Kukla-Bartoszek ◽  
Paweł Teisseyre ◽  
Ewelina Pośpiech ◽  
Joanna Karłowska-Pik ◽  
Piotr Zieliński ◽  
...  

AbstractIncreasing understanding of human genome variability allows for better use of the predictive potential of DNA. An obvious direct application is the prediction of the physical phenotypes. Significant success has been achieved, especially in predicting pigmentation characteristics, but the inference of some phenotypes is still challenging. In search of further improvements in predicting human eye colour, we conducted whole-exome (enriched in regulome) sequencing of 150 Polish samples to discover new markers. For this, we adopted quantitative characterization of eye colour phenotypes using high-resolution photographic images of the iris in combination with DIAT software analysis. An independent set of 849 samples was used for subsequent predictive modelling. Newly identified candidates and 114 additional literature-based selected SNPs, previously associated with pigmentation, and advanced machine learning algorithms were used. Whole-exome sequencing analysis found 27 previously unreported candidate SNP markers for eye colour. The highest overall prediction accuracies were achieved with LASSO-regularized and BIC-based selected regression models. A new candidate variant, rs2253104, located in the ARFIP2 gene and identified with the HyperLasso method, revealed predictive potential and was included in the best-performing regression models. Advanced machine learning approaches showed a significant increase in sensitivity of intermediate eye colour prediction (up to 39%) compared to 0% obtained for the original IrisPlex model. We identified a new potential predictor of eye colour and evaluated several widely used advanced machine learning algorithms in predictive analysis of this trait. Our results provide useful hints for developing future predictive models for eye colour in forensic and anthropological studies.


2016 ◽  
Author(s):  
Geoffrey Fouad ◽  
André Skupin ◽  
Christina L. Tague

Abstract. Percentile flows are statistics derived from the flow duration curve (FDC) that describe the flow equaled or exceeded for a given percent of time. These statistics provide important information for managing rivers, but are often unavailable since most basins are ungauged. A common approach for predicting percentile flows is to deploy regional regression models based on gauged percentile flows and related independent variables derived from physical and climatic data. The first step of this process identifies groups of basins through a cluster analysis of the independent variables, followed by the development of a regression model for each group. This entire process hinges on the independent variables selected to summarize the physical and climatic state of basins. Distributed physical and climatic datasets now exist for the contiguous United States (US). However, it remains unclear how to best represent these data for the development of regional regression models. The study presented here developed regional regression models for the contiguous US, and evaluated the effect of different approaches for selecting the initial set of independent variables on the predictive performance of the regional regression models. An expert assessment of the dominant controls on the FDC was used to identify a small set of independent variables likely related to percentile flows. A data-driven approach was also applied to evaluate two larger sets of variables that consist of either (1) the averages of data for each basin or (2) both the averages and statistical distribution of basin data distributed in space and time. The small set of variables from the expert assessment of the FDC and two larger sets of variables for the data-driven approach were each applied for a regional regression procedure. Differences in predictive performance were evaluated using 184 validation basins withheld from regression model development. The small set of independent variables selected through expert assessment produced similar, if not better, performance than the two larger sets of variables. A parsimonious set of variables only consisted of mean annual precipitation, potential evapotranspiration, and baseflow index. Additional variables in the two larger sets of variables added little to no predictive information. Regional regression models based on the parsimonious set of variables were developed using 734 calibration basins, and were converted into a tool for predicting 13 percentile flows in the contiguous US. Supplementary Material for this paper includes an R graphical user interface for predicting the percentile flows of basins within the range of conditions used to calibrate the regression models. The equations and performance statistics of the models are also supplied in tabular form.


Author(s):  
Sachin Kumar ◽  
Karan Veer

Aims: The objective of this research is to predict the covid-19 cases in India based on the machine learning approaches. Background: Covid-19, a respiratory disease caused by one of the coronavirus family members, has led to a pandemic situation worldwide in 2020. This virus was detected firstly in Wuhan city of China in December 2019. This viral disease has taken less than three months to spread across the globe. Objective: In this paper, we proposed a regression model based on the Support vector machine (SVM) to forecast the number of deaths, the number of recovered cases, and total confirmed cases for the next 30 days. Method: For prediction, the data is collected from Github and the ministry of India's health and family welfare from March 14, 2020, to December 3, 2020. The model has been designed in Python 3.6 in Anaconda to forecast the forecasting value of corona trends until September 21, 2020. The proposed methodology is based on the prediction of values using SVM based regression model with polynomial, linear, rbf kernel. The dataset has been divided into train and test datasets with 40% and 60% test size and verified with real data. The model performance parameters are evaluated as a mean square error, mean absolute error, and percentage accuracy. Results and Conclusion: The results show that the polynomial model has obtained 95 % above accuracy score, linear scored above 90%, and rbf scored above 85% in predicting cumulative death, conformed cases, and recovered cases.


2021 ◽  
Vol 2 (2) ◽  
pp. 40-47
Author(s):  
Sunil Kumar ◽  
Vaibhav Bhatnagar

Machine learning is one of the active fields and technologies to realize artificial intelligence (AI). The complexity of machine learning algorithms creates problems to predict the best algorithm. There are many complex algorithms in machine learning (ML) to determine the appropriate method for finding regression trends, thereby establishing the correlation association in the middle of variables is very difficult, we are going to review different types of regressions used in Machine Learning. There are mainly six types of regression model Linear, Logistic, Polynomial, Ridge, Bayesian Linear and Lasso. This paper overview the above-mentioned regression model and will try to find the comparison and suitability for Machine Learning. A data analysis prerequisite to launch an association amongst the innumerable considerations in a data set, association is essential for forecast and exploration of data. Regression Analysis is such a procedure to establish association among the datasets. The effort on this paper predominantly emphases on the diverse regression analysis model, how they binning to custom in context of different data sets in machine learning. Selection the accurate model for exploration is the most challenging assignment and hence, these models considered thoroughly in this study. In machine learning by these models in the perfect way and thru accurate data set, data exploration and forecast can provide the maximum exact outcomes.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4776
Author(s):  
Hyoungsik Nam ◽  
Ki-Hyuk Seol ◽  
Junhee Lee ◽  
Hyeonseong Cho ◽  
Sang Won Jung

Touchscreens have been studied and developed for a long time to provide user-friendly and intuitive interfaces on displays. This paper describes the touchscreen technologies in four categories of resistive, capacitive, acoustic wave, and optical methods. Then, it addresses the main studies of SNR improvement and stylus support on the capacitive touchscreens that have been widely adopted in most consumer electronics such as smartphones, tablet PCs, and notebook PCs. In addition, the machine learning approaches for capacitive touchscreens are explained in four applications of user identification/authentication, gesture detection, accuracy improvement, and input discrimination.


1993 ◽  
Vol 08 (21) ◽  
pp. 3721-3745 ◽  
Author(s):  
K. URBANOWSKI

Approximate formulae are given for the effective Hamiltonian H||(t) governing the time evolution in a subspace ℋ|| of the state space ℋ. The properties of matrix elements of H||(t) and the eigenvalue problem for H||(t) are discussed in the case of two-dimensional ℋ||. The eigenvectors of H||(t) for the short time region are found to be different from those for the long time region. The decay law of particles described by the eigenvectors of H||(t) is shown to have the form of the exponential function multiplied by some time-independent factor, equal to 1 only in the case of the [Formula: see text]-invariant theory. Some general properties of the matrix elements of H||(t) are tested in the Lee model.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 918
Author(s):  
Fan Yi Khong ◽  
Tee Connie ◽  
Michael Kah Ong Goh ◽  
Li Pei Wong ◽  
Pin Shen Teh ◽  
...  

Background: The unprecedented development of Artificial Intelligence has revolutionised the healthcare industry. In the next generation of healthcare systems, self-diagnosis will be pivotal to personalised healthcare services. During the COVID-19 pandemic, new screening and diagnostic approaches like mobile health are well-positioned to reduce disease spread and overcome geographical barriers. This paper presents a non-invasive screening approach to predict the health of a person from visually observable features using machine learning techniques. Images like face and skin surface of the patients are acquired using camera or mobile devices and analysed to derive clinical reasoning and prediction of the person’s health. Methods: In specific, a two-level classification approach is presented. The proposed hierarchical model chooses a class by training a binary classifier at the node of the hierarchy. Prediction is then made using a set of class-specific reduced feature set. Results: Testing accuracies of 86.87% and 76.84% are reported for the first and second-level classification. Empirical results demonstrate that the proposed approach yields favourable prediction results while greatly reduces the computational time. Conclusions: The study suggests that it is possible to predict the health condition of a person based on his/her face appearance using cost-effective machine learning approaches.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 90
Author(s):  
Giovanni Bucci ◽  
Fabrizio Ciancetta ◽  
Edoardo Fiorucci ◽  
Simone Mari ◽  
Andrea Fioravanti

The topic of non-intrusive load monitoring (NILM) has seen a significant increase in research interest over the past decade, which has led to a significant increase in the performance of these systems. Nowadays, NILM systems are used in numerous applications, in particular by energy companies that provide users with an advanced management service of different consumption. These systems are mainly based on artificial intelligence algorithms that allow the disaggregation of energy by processing the absorbed power signal over more or less long time intervals (generally from fractions of an hour up to 24 h). Less attention was paid to the search for solutions that allow non-intrusive monitoring of the load in (almost) real time, that is, systems that make it possible to determine the variations in loads in extremely short times (seconds or fractions of a second). This paper proposes possible approaches for non-intrusive load monitoring systems operating in real time, analysing them from the point of view of measurement. The measurement and post-processing techniques used are illustrated and the results discussed. In addition, the work discusses the use of the results obtained to train machine learning algorithms that allow you to convert the measurement results into useful information for the user.


Author(s):  
Rachel A. Oldroyd ◽  
Michelle A. Morris ◽  
Mark Birkin

Consumer food environments have transformed dramatically in the last decade. Food outlet prevalence has increased, and people are eating food outside the home more than ever before. Despite these developments, national spending on food control has reduced. The National Audit Office report that only 14% of local authorities are up to date with food business inspections, exposing consumers to unknown levels of risk. Given the scarcity of local authority resources, this paper presents a data-driven approach to predict compliance for newly opened businesses and those awaiting repeat inspections. This work capitalizes on the theory that food outlet compliance is a function of its geographic context, namely the characteristics of the neighborhood within which it sits. We explore the utility of three machine learning approaches to predict non-compliant food outlets in England and Wales using openly accessible socio-demographic, business type, and urbanness features at the output area level. We find that the synthetic minority oversampling technique alongside a random forest algorithm with a 1:1 sampling strategy provides the best predictive power. Our final model retrieves and identifies 84% of total non-compliant outlets in a test set of 92,595 (sensitivity = 0.843, specificity = 0.745, precision = 0.274). The originality of this work lies in its unique and methodological approach which combines the use of machine learning with fine-grained neighborhood data to make robust predictions of compliance.


2020 ◽  
Vol 3 ◽  
Author(s):  
Md Hasinur Rahaman Khan ◽  
Ahmed Hossain

Coronavirus disease 2019 (COVID-19) has developed into a global pandemic, affecting every nation and territory in the world. Machine learning-based approaches are useful when trying to understand the complexity behind the spread of the disease and how to contain its spread effectively. The unsupervised learning method could be useful to evaluate the shortcomings of health facilities in areas of increased infection as well as what strategies are necessary to prevent disease spread within or outside of the country. To contribute toward the well-being of society, this paper focusses on the implementation of machine learning techniques for identifying common prevailing public health care facilities and concerns related to COVID-19 as well as attitudes to infection prevention strategies held by people from different countries concerning the current pandemic situation. Regression tree, random forest, cluster analysis and principal component machine learning techniques are used to analyze the global COVID-19 data of 133 countries obtained from the Worldometer website as of April 17, 2020. The analysis revealed that there are four major clusters among the countries. Eight countries having the highest cumulative infected cases and deaths, forming the first cluster. Seven countries, United States, Spain, Italy, France, Germany, United Kingdom, and Iran, play a vital role in explaining the 60% variation of the total variations by us of the first component characterized by all variables except for the rate variables. The remaining countries explain only 20% of the variation of the total variation by use of the second component characterized by only rate variables. Most strikingly, the analysis found that the variable number of tests by the country did not play a vital role in the prediction of the cumulative number of confirmed cases.


Sign in / Sign up

Export Citation Format

Share Document