Modification of ED-20 epoxy resin with polyvinyl formal ethylal

2020 ◽  
pp. 56-58
Author(s):  
N. V. Kostromina ◽  
Yu. V. Olikhova ◽  
Khlaing Zo U ◽  
V. S. Osipchik ◽  
T. P. Kravchenko

One of the methods for increasing the impact toughness of materials based on epoxy resins is modification with thermoplastics. The paper presents experimental data on the effect of polyvinyl formal ethylal (Vinyfl ex) and various curing modes on the toughness of compositions based on ED-20. The mechanism for modifying ED-20 with Vinyflex was analyzed. The data obtained are necessary for the development of domestic technology for the production of impact-resistant plastics.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2205
Author(s):  
Qian Li ◽  
Yujie Li ◽  
Yifan Chen ◽  
Qiang Wu ◽  
Siqun Wang

A novel liquid phosphorous-containing flame retardant anhydride (LPFA) with low viscosity was synthesized from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and methyl tetrahydrophthalic anhydride (MeTHPA) and further cured with bisphenol-A epoxy resin E-51 for the preparation of the flame retardant epoxy resins. Both Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS) and nuclear magnetic resonance (NMR) measurements revealed the successful incorporation of DOPO on the molecular chains of MeTHPA through chemical reaction. The oxygen index analysis showed that the LPFA-cured epoxy resin exhibited excellent flame retardant performance, and the corresponding limiting oxygen index (LOI) value could reach 31.2%. The UL-94V-0 rating was achieved for the flame retardant epoxy resin with the phosphorus content of 2.7%. With the addition of LPFA, the impact strength of the cured epoxy resins remained almost unchanged, but the flexural strength gradually increased. Meanwhile, all the epoxy resins showed good thermal stability. The glass transition temperature (Tg) and thermal decomposition temperature (Td) of epoxy resin cured by LPFA decreased slightly compared with that of MeTHPA-cured epoxy resin. Based on such excellent flame retardancy, low viscosity at room temperature and ease of use, LPFA showed potential as an appropriate curing agent in the field of electrical insulation materials.


2021 ◽  
Author(s):  
Heba Mansour ◽  
Ahmed M.R. Fath El-Bab ◽  
Emad A. Soliman ◽  
Ahmed L. Abdel-Mawgood

Abstract Microfluidic devices are a rising technology to automatize chemical and biological operations. In this context, laser ablation has significant potential for polymer-based microfluidic platforms' fast and economical manufacturing. Nevertheless, the manufacturing of epoxy-based microfluidic chips is considered highly cost full due to demand for cleanroom facilities that utilize expensive equipment and lengthy processes. Therefore, this study targeted investigating the feasibility of epoxy resins to be fabricated as a lab-on-chip using carbon dioxide laser ablation. The chemical structural properties and thermal stability of the plain epoxy resins were characterized by Fourier transform infrared spectral analysis (FT-IR) and thermogravimetric analysis (TGA). Moreover, a specific migration test was performed to quantify potential migrants by gas chromatography coupled to mass spectrometry (GC-MS) to prove that the cured epoxy resin would not release unreacted monomers to the biological solution test, which caused inhibition of the sensitive biological reactions. By investigating the impact of this process on microchannels' dimensions and quality, a laser technique using CO2 laser was used in vector mode to engrave into a transparent epoxy resin chip. The resulting microchannels were characterized using 3D Laser microscopy. The outcomes of this study showed considerable potential for laser ablation in machining the epoxy-based chips, whereas the microchannels were produced with minor bulges' height (0.027 µm) with no clogging. Moreover, a reasonable depth of 99.31 µm with roughness (Ra) of 14.52 µm was obtained at a laser speed of 5 mm/s and laser power of 1.8 W. This process can produce epoxy resin-based microfluidic chips without the need for cleanroom facilities that require expensive equipment and lengthy process.


2020 ◽  
Vol 15 ◽  
pp. 155892502090132
Author(s):  
Sang-Hoon Lee ◽  
Seung-Won Oh ◽  
Young-Hee Lee ◽  
Il-Jin Kim ◽  
Dong-Jin Lee ◽  
...  

To prepare flame-retardant epoxy resin, phosphorus compound containing di-hydroxyl group (10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phospha phenanthrene-10-oxide, DOPO-HQ) was reacted with uncured epoxy resin (diglycidyl ether of bisphenol A, YD-128) and then cured using a curing agent (dicyandiamide, DICY). This study focused on the effect of phosphorus compound/phosphorus content on physical properties and flame retardancy of cured epoxy resin. The thermal decomposition temperature of the cured epoxy resins (samples: P0, P1.5, P2.0, and P2.5, the number represents the wt% of phosphorus) increased with increasing the content of phosphorus compound/phosphorus (0/0, 19.8/1.5, 27.8/2.0, and 36.8/2.5 wt%) based on epoxy resin. The impact strength of the cured epoxy resin increased significantly with increasing phosphorus compound content. As the phosphorus compound/phosphorus content increased from 0/0 to 36.8/2.5 wt%, the glass transition temperature (the peak temperature of loss modulus curve) increased from 135.2°C to 142.0°C. In addition, as the content of phosphorous compound increased, the storage modulus remained almost constant up to higher temperature. The limiting oxygen index value of cured epoxy resin increased from 21.1% to 30.0% with increasing phosphorus compound/phosphorus content from 0/0 to 36.8/2.5 wt%. The UL 94 V test result showed that no rating for phosphorus compounds less than 19.8 wt% and V-1 for 27.8 wt%. However, when the phosphorus compound was 36.8 wt%, the V-0 level indicating complete flame retardancy was obtained. In conclusion, the incorporation of phosphorus compounds into the epoxy chain resulted in improved properties such as impact strength and heat resistance, as well as a significant increase in flame retardancy.


2015 ◽  
Vol 744-746 ◽  
pp. 1463-1466
Author(s):  
Xi Wang

This paper presents the synthesis of a new type of flexible epoxy curing agent and an approach to improve the toughness of epoxy resin by curing without reducing the strength and modulus of the resin-cured material. The results show that the degree of toughness reaches maximum values when the flexible curing agent is applied at weight percentages (wt.%) between 10% and 15%. When the amount of flexible curing agent added to epoxy resin weight is 10wt.%, the impact toughness and fracture toughness increases by 33.3% and 96.3%, respectively, compared with the pure epoxy resin. When the amount of flexible curing agent added to epoxy is 10wt.%, the resulting impact thoughness of the material is 19.5 kJ•m-2 at-50°C, the impact toughness of pure epoxy resin is only 7.96 kJ•m-2.


2012 ◽  
Vol 535-537 ◽  
pp. 2499-2502
Author(s):  
X. Wang ◽  
S. R. Zheng ◽  
R. M. Wang

Epoxy resin structural adhesives modified by flexible curing agent. Dependening on the mechanical properties of epoxy resins on the flexible curing agent content was studied. The impact fracture toughness was discussed in terms of fracture surface fractography.


2010 ◽  
Vol 150-151 ◽  
pp. 727-731 ◽  
Author(s):  
Zhi Yi Huang ◽  
Shao Rong Lu ◽  
Zhi You Yang ◽  
Chun He Yu ◽  
Dong Guo

Liquid crystal polyurethane (LCPBI) containing biphenylnate and imide units was synthesized and characterized and used to modify the conventional epoxy resin (E-51). Experimental results revealed that the impact strength of the epoxy resin modified with LCPBI was 2.5 times higher than that of unmodified epoxy resin, and the tensile strength as well as the bending strength was also improved. The thermal decomposition temperature of modified systems was also 15-20oC higher than that of the unmodified system, and the fracture structures of the blends was investigated by SEM.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Wilson Webo ◽  
Leonard Masu ◽  
Maina Maringa

The effect of the combined chemical treatment of sisal fibres through the subsequent processes of mercerisation (alkali treatment), then silane treatment and eventually acid hydrolysis, on sisal fibre was investigated. The effect of the treated fibres on the impact toughness and hardness of their composites with epoxy resin was also studied. Scanning electron microscopy of the surfaces of the treated and untreated fibres showed that the chemical treatment processes enhanced the removal of surface impurities and therefore increased the roughness of the surfaces of the fibres. This avails an increased surface area for interlocking with matrix and is, therefore, expected to enhance adhesion of the two. The treated fibre reinforced composites were observed to have higher values of impact toughness and hardness than the untreated fibre reinforced composites. These higher values were attributed to better interfacial bonding due to better mechanical interlocking between the treated fibres and epoxy resin arising from the increased roughness of the treated fibres.


2011 ◽  
Vol 194-196 ◽  
pp. 263-266
Author(s):  
Zong Fu Guo ◽  
Zhi Li Zhong

In this paper the impact toughness of the basalt fabric reinforced epoxy resin composites was discussed. In the test, the basalt fabricwas used to reinforce the TDE-86epoxy resin, and 70#anhydride was used as curing agent. The mode of [45°/-45°] was chosen to layering and prepare the unit-cells. Resin Transfer Molding instrument was used to cure and make the basalt fabricreinforced epoxy resin composites, and the instron-based Dynatup9250HV material impact testing machine was used to test the impact resistance. Conclusion: in the low-velocity impact test, the maximum load the sample can bear was about 9.6538kN,and the total energy the sample absorbed was 19.3030J; Observing the impact morphology of the sample, the basalt fabricreinforced epoxy resin composite was not perforated, then its failure mode was matrix cracking, drawing and fracture of the fiber. The results provided a scientific basis for basalt fabricreinforced composites, and increase the development of the production related to the basalt fabriccomposites.


2011 ◽  
Vol 52-54 ◽  
pp. 2056-2059
Author(s):  
Da Hu Yao ◽  
Yu Qing Zhang ◽  
Joong Hee Lee

A bisphenol-A glycidol ether epoxy resin was toughened in cryogenic temperature using reactive macroglycol as modifiers. The properties of modified epoxy resin were characterized by SEM and DMA. Phase-separated structure formed during curing process in the PPG and PTMG modified epoxy resins system, and did not occurred in the PEO modified epoxy resins system. The impact strength of epoxy resin increased at both room temperature (RT) and cryogenic temperature (CT, 77 K) using PEO as modifier. The DMA results confirm that the introduction of PEO chains in the structure of the epoxy increases the mobility of the molecular segment of epoxy network at both RT and CT.


Sign in / Sign up

Export Citation Format

Share Document