scholarly journals A method for determining the high-temperature coefficient of friction

2021 ◽  
pp. 4-5
Author(s):  
V. V. Kovriga ◽  
A. S. Vasil'eva ◽  
A. I. Malikov

A method for estimating the coefficient of friction at high temperatures up to 220°C in the thermal chamber of a bursting machine has been developed. It is shown that the coefficient of kinetic friction with a change in temperature from 25°C to 220°C varies from 0.04 to 0.1. In the developed method, the coefficient of static friction and the coefficient of kinetic friction are determined. The coefficient of static friction at a temperature of 25°C to 220°C varies from 0.06 to 0.13.

Author(s):  
Jack Youqin Huang

Abstract This paper deals with the problem of static and dynamic (or kinetic) friction, namely the coefficients of friction for the two states. The coefficient of static friction is well known, and its theory and practice are commonly accepted by the academia and the industry. The coefficient of kinetic friction, however, has not fully been understood. The popular theory for the kinetic friction is that the coefficient of dynamic friction is smaller than the coefficient of static friction, by comparison of the forces applied in the two states. After studying the characteristics of the coefficient of friction, it is found that the comparison is not appropriate, because the inertial force was excluded. The new discovery in the paper is that coefficients of static friction and dynamic friction are identical. Wheel “locked” in wheel braking is further used to prove the conclusion. The key to cause confusions between the two coefficients of friction is the inertial force. In the measurement of the coefficient of static friction, the inertial force is initiated as soon as the testing object starts to move. Therefore, there are two forces acting against the movement of the object, the frictional force and the inertial force. But in the measurement of the coefficient of kinetic friction, no inertial force is involved because velocity must be kept constant.


Tribologia ◽  
2016 ◽  
Vol 270 (6) ◽  
pp. 131-138 ◽  
Author(s):  
Aleksandra REWOLIŃSKA ◽  
Piotr KOWALEWSKI ◽  
Karolina PERZ ◽  
Marta PACZKOWSKA

The paper presents the results of coefficient of static and kinetic friction depending on the load. During the study, the sample in the form of a pin with expanded graphite, mounted in a holder, was forcibly pressed the Fn to the steel countersample. The device on which the tests were carried out research allows sliding friction in reciprocating motion. It has been found that there is a noticeable difference between the coefficient of static friction and kinetic for both fixed and different pressures. In the field of applied pressure, there were no significant their impact on the coefficient of friction; applied force was not sufficiently high which may have contributed to this state. The study had a distinctive character.


1955 ◽  
Vol 22 (2) ◽  
pp. 207-214
Author(s):  
David Sinclair

Abstract Frictional vibrations, such as stick-slip motion and automobile-brake squeal, which occur when two solid bodies are rubbed together, are analyzed mathematically and observed experimentally. The conditions studied are slow uniform motion and relatively rapid simple harmonic motion of brake lining over a cast-iron base. The equations of motion show and the observations confirm that frictional vibrations are caused primarily by an inverse variation of coefficient of friction with sliding velocity, but their form and occurrence are greatly dependent upon the dynamical constants of the mechanical system. With a constant coefficient of friction, the vibration initiated whenever sliding begins is rapidly damped out, not by the friction but by the “natural” damping of all mechanical systems. The coefficient of friction of most brake linings and other organic materials was essentially invariant with velocity, except that the static coefficient was usually greater than the sliding coefficient. Most such materials usually showed a small decrease in coefficient with increasing temperature. The persistent vibrations resulting from the excess static friction were reduced or eliminated by treating the rubbing surfaces with polar organic compounds which produced a rising friction characteristic.


Tribologia ◽  
2017 ◽  
pp. 39-45 ◽  
Author(s):  
Maciej KUJAWA ◽  
Wojciech WIELEBA

The effect of tensile deformation on polymer structures and their mechanical properties is described in various papers. However, the majority of articles are focused on high deformation (a few hundred percentiles) at increased temperature. It causes changes in orientation and the crystallinity ratio. The authors of this paper asses the influence of strain (max. 50%) on hardness and the coefficient of friction (polymer–steel A1 couple) for selected polymers. The deformation was conducted at room temperature and maintained during tests. There was a significant reduction (up to 50%) of hardness after deformation, in the case of all examined polymers. In the case of PE-HD, the coefficient of kinetic friction almost doubled its value (89% increase). The reduction of the coefficient of static friction for sliding pairs that include PTFE and PA6 was about 26% (in comparison with non-deformed polymer). For all investigated polymers, hardness increased over time (up to 40% after 24 hours). Coefficients of static and kinetic friction decreased in 24 hours (up to 29% coefficient of static friction and 19% coefficient of kinetic friction). The research shows that a small deformation causes changes in polymer properties. Moreover, these changes appear at room temperature directly after deformation.


1943 ◽  
Vol 150 (1) ◽  
pp. 140-167 ◽  
Author(s):  
E. Orowan

A numerical or graphical method is given for computing, in strip or plate rolling, the distribution of roll pressure over the arc of contact and the quantities derived from this (e.g. the vertical roll force, the torque, and the power consumption). The method avoids all mathematical approximations previously used in the theoretical treatment of rolling, and permits any given variation of the yield stress and of the coefficient of friction along the arc of contact to be taken into account. It can be used, therefore, in both hot and cold rolling, provided that the basic physical quantities (yield stress and coefficient of friction) are known. The usual assumption that the deformation could be regarded as a locally homogeneous compression has not been made, and the inhomogeneity of stress distribution has been taken into account approximately by using results derived by Prandtl and Nádai from the Hencky treatment of two-dimensional plastic deformation. It is found that the discrepancy between the roll pressure distribution curves calculated from the Kármán theory and those measured by Siebel and Lueg is due to the assumption in the theory that the frictional drag between the rolls and the rolled stock is equal to the product of the roll pressure and the coefficient of friction. If frictional effects are dominant, as in hot rolling, this product may easily exceed the yield stress in shear which is the natural upper limit to the frictional drag, and then static friction, instead of slipping, occurs. This has been taken into account in the present method, and the calculated curves of roll pressure distribution show good agreement with the curves measured by Siebel and Lueg.


2008 ◽  
Vol 53 (No. 1) ◽  
pp. 14-19 ◽  
Author(s):  
R. Rusinek ◽  
M. Molenda

he present paper examines the static and kinetic coefficient of friction of rapeseed. The project utilized two methods of determination of coefficient of friction of rapeseed: according Eurocode 1 (kinetic) in direct shear test and (static) in model silo. Samples of rapeseed in a range of moisture content from 6 to 15% w.b. were used and the tests were performed for galvanized steel, stainless steel and concrete B 30. Coefficient of friction for both steel types approached stable value for all levels of moisture content w.b. in a range from 0.11 to 0.18, for concrete B 30 it was found in a range from 0.25 to 0.43. The coefficient of static friction found in model silo decreased with an increase in vertical pressure from 0.3 to 0.2 for first loading, while in subsequent loading cycles decreased from 0.2 to 0.1.


1930 ◽  
Vol 3 (1) ◽  
pp. 67-73
Author(s):  
R. Ariano

Abstract (i) The coefficients of friction (ƒI and ƒnI) of rubber tires on dry non-dusty surfaces are practically independent of the load on the wheel, and (with pneumatics) of the inflation pressure; on muddy surfaces the coefficients (especially ƒnI tend to decrease with increasing load. (ii) Dust, mud, or water reduces the friction with rubber tires, but not with iron tires. (iii) The tread pattern reduces the friction on dry surfaces, but increases it on muddy surfaces. (iv) There is no systematic difference between pneumatic, semi-pneumatic (cushion) and solid tires as regarda coefficient of friction; the details of individual design and material are the deciding factors; this is in agreement with the results of Bredtscheiner (Verkehrstechnik, 1922; see Schaar, “Die Beanspruchung der Strassen durch die Kraftfahrzeuge,” Zementverlag, 1925). (v) There is no simple relationship between the coefficient of friction and the compressibility or area of contact of the tire. (vi) The static friction perpendicular to the direction of travel is greater than in this direction. (vii) The coefficient of friction depends on the type of road surface, its de-formability, and especially on the presence or absence of dust, mud, or water. (viii) Rubber tires have a much higher coefficient of friction than iron tires, especially on dry hard surfaces. (ix) The static friction is 10 to 20 per cent higher than the dynamic friction.


2018 ◽  
Vol 1 (1) ◽  
pp. 047-051
Author(s):  
Muhammad Nuh Hudawi Pasaribu ◽  
Muhammad Sabri ◽  
Indra Nasution

Tekstur permukaan jalan umumnya terdiri dari aspal dan beton. Kekasaran tekstur permukaan jalan dapat disebabkan oleh struktur perkerasan dan beban kendaraan. Kekasaran tekstur permukaan jalan, bebandan kecepatan kendaraan akan mempengaruhi koefisien gesek. Untuk mengetahui nilai koefisien gesek dilakukan penelitian dengan melakukan variasi beban mobil (Daihatsu Xenia, Toyota Avanza, Toyota Innova dan Toyota Yaris) terhadap kontak permukaan jalan (aspal dan beton) dan kecepatan kendaraan. Hasil penelitian menunjukkan bahwa massa, lebar kontak tapak ban terhadap permukaan jalan dan kecepatan sangat mempengaruhi nilai koefisien gesek kinetis. Koefisien gesek kinetis yang terbesar untuk ketiga kontak permukaan jalan (aspal lama IRI 10,1, Aspal baru IRI 6,4 dan beton IRI 6,7) dengan menggunakan mobil Daihatsu Xenia terjadi pada kondisi jalan beton yaitu 0,495 pada kecepatan 35 Km/Jam. Koefisien kinetis jalan beton > 52 % dibandingkan jalan aspal pada parameter IRI yang sama (6-8).Koefisien gesek kinetis > 0,33 diperoleh di jalan beton pada kecepatan 30 – 40 Km/Jam   The texture of road surface generally consists of asphalt and concrete. The roughness of the road surface texture could be caused by the structure of the pavement and the load of the vehicles. Roughness of road surface texture, load and speed of vehicles would affect to the coefficient of friction. This research was carried out to find out the value of the coefficient of friction by using various load of cars (Daihatsu Xenia, Toyota Avanza, Toyota Innova and Toyota Yaris) on road surface contact (asphalt and concrete) and vehicle speed. The result showed the mass, the width of the tire tread contact to the road surface, and speed very influenced the coefficient value of kinetic friction. The biggest kinetic friction coefficient for all three road surface contacts (IRI 10.1 old asphalt, IRI 6.4 and IRI 6.7) using the Daihatsu Xenia was on the concrete road condition i.e. 0.495 on a speed of 35 km/hour. The concrete road kinetic coefficient was >52% compared to the asphalt road in the same IRI parameter (6-8). The kinetic friction coefficient >0.33 was obtained on the concrete road on a speed of 30 - 40 km/hour.


Tribologia ◽  
2018 ◽  
Vol 279 (3) ◽  
pp. 107-111
Author(s):  
Anita PTAK ◽  
Piotr KOWALEWSKI

For the polymeric materials, changing of the temperature causes changes in mechanical and tribological properties of sliding pairs. The goal of the present study was to determine the change in Young's modulus and kinetic friction coefficient depending of the temperature. Three thermoplastic polymers, PA6, PET and PEEK, were tested. These materials cooperated in sliding motion with a C45 construction steel disc. As part of the experiment, the Young's modulus tests (by 3-point bending method) and kinetic friction coefficient studies (using pin-on-disc stand) were carried out. The temperature range of mechanical and tribological tests was determined at T = –50°C±20°C. Comparing the results of mechanical and tribological properties, there is a tendency to decrease the coefficient of friction as the Young's modulus increases while reducing the working temperature.


1961 ◽  
Vol 28 (2) ◽  
pp. 213-217 ◽  
Author(s):  
F. F. Ling ◽  
R. S. Weiner

Measurements are reported of electric contact resistance, actual area of contact, static friction, adhesion and pure shear for lead on lead. The data exhibit a statistical bifurcation of friction. In other words, below extreme pressures, statistically there are two branches of the coefficient of friction versus normal load relationship. The nature of one of the branches is explicable exclusively in terms of the weld-junction or adhesion theory of friction. The nature of the other, however, is not so explicable. This points to the existence of what Holm [1] called the Y-term of friction, the nature of which has yet to be satisfactorily explained.


Sign in / Sign up

Export Citation Format

Share Document