scholarly journals Based on Structural Type and Fire Resistance Certification Type A Study on the Analysis of High-Rise Wooden Architecture

2019 ◽  
Vol 14 (6) ◽  
pp. 177-186
Author(s):  
엄현진 ◽  
박지훈 ◽  
공순구
Author(s):  
Lin-Hai Han ◽  
Dan-Yang Ma ◽  
Kan Zhou

Concrete-encased CFST (concrete-filled steel tube) is a kind of composite structure comprised of a CFST component and a reinforced concrete (RC) component. The concrete encased CFST possesses superior ductility and higher stiffness. They are gaining popularity in high-rise buildings, large-span structures, bridges, subway stations and workshops. This paper initially reviews the recent research on concrete-encased CFST structures. The major research findings on bond performance, static performance, dynamic performance and fire resistance are presented. This paper also outlines some construction considerations, such as the utilization of materials, the fabrication of the steel tube, and the methods of casting the inner and outer concrete. Finally, some typical practical projects utilizing concrete-encased CFST members are presented and reviewed.


2012 ◽  
Vol 166-169 ◽  
pp. 2197-2201
Author(s):  
Yang Bing Liu ◽  
Fang Chen ◽  
Jing Bo Liu

Because of possessing the advantage of steel structures and concrete structures, the steel-concrete mixed structure has been developed rapidly and used widely. And at present, it has been a popular structural type in high-rise buildings. Although mixed structures have been used in earthquake region more and more, seismic fragility studies for this type of construction is scarce. Based on analyzing and summarizing the available studies on structural seismic fragility, present research situation on seismic fragility of mixed structures at home and abroad is described; the key problems to solving urgently in the analysis of seismic fragility for mixed structures are put forward; and the trend of development is forecasted. Study on the issues above will give some help to aseismic design, strengthening, repairing and disaster reduction of mixed structures.


2014 ◽  
Vol 901 ◽  
pp. 11-14
Author(s):  
In Kyu Kwon

Material strength is one of the most important factors in designing a building. For this reason, many structural steel manufacturers have been trying to develop it. In Korea, SM 570 is one high structural steel that has many merits such as longer span and reduction of construction cost for steel works. However, the fire resistance performance of H-section made of SM 570 has not been evaluated. Especially, in high-rise steel building that can be built with various joint systems like hinged to hinge, hinge to fixed, and fixed to fixed. However, the performance of fire resistant is limited. In this paper, to evaluate the fire resistance of H-section made of SM 570, the advanced fire design was conducted using regressive equation of the mechanical and thermal properties at high temperature, compared with those made of an ordinary structural steel, SS 400. The facts show that hinge to hinge had the lowest load bearing capacity at high temperature. Therefore, to keep the same fire resistance with other types boundary conditions, the more passive fire materials are required.


2014 ◽  
Vol 919-921 ◽  
pp. 95-98
Author(s):  
In Kyu Kwon

High-rise building is one of solution for lack of houses and offices in downtown. And high-rise buildings can be built by application of high strength materials such as structural steels and concrete. Particularly, high strength structural steels have much efficient properties in not only design phase but construction one. Therefore, the use of the high strength structural steels has been increased every year. However, the H-section made of the high strength structural steels can be designed and constructed with longer height than that was evaluated for fire resistance by fire test to satisfy the fire regulation. In this study, to suggest an exact fire performance at high temperature of H-section made of high strength structural steels, a fire engineering technique was used. The derived facts showed that SM 570 revealed better structural stability at high temperature and as longer length of H-section was used, the more fire protection materials requited.


2017 ◽  
Vol 737 ◽  
pp. 465-470
Author(s):  
Jae Hong An ◽  
In Hwan Yeo ◽  
Ki Soo Jeon ◽  
Ki Ho In

There are a lot of concerns on safety structure performance by being buildings to be large and high-rise. In particular, damage due to the fire recently leads to a large disaster and therefore a variety of countries operate the regulation on the fire resistance performance depending on the building structure. There are differences on the fire resistance design in each country but 50% of the design load is suggested to be reasonable for the normal temperature during the fire by applying the concept of the loading ratio to the fire resistance design of structures. Since the loading ratio is the factor having a major impact on the evaluation of the fire resistance performance, it should be preferentially considered. The study on setting up the loading ratio to evaluate the fire resistance performance and safety of structures has yet to be fully furnished in South Korea. Therefore, in this paper, the loading ratio proper for the construction status in South Korea is to be taken into account and then the ratio is to be proposed on the single reinforcement beam.


2021 ◽  
Vol 12 (2) ◽  
pp. 189-202
Author(s):  
Bishir Kado ◽  
Shahrin Mohammad ◽  
Yeong Huei Lee ◽  
Poi Ngian Shek ◽  
Mariyana Aida Ab Kadir

Reduction in self-weight and achievement of full fire resistance requirements are some of the important considerations in the design of high-rise structures. Lightweight concrete filled steel tube (CFST) column provides an alternative method to serve these purposes. Recent studies on lightweight CFST columns at ambient temperature have revealed that foamed concrete can be a beneficial and innovative alternative material. Hence, this study investigates the potential of using foamed concrete in circular hollow steel columns for improving fire resistance. A series of nine fire test on circular unfilled hollow and foamed concrete filled hollow section column were carried out. ISO 834 standard fire exposure test were carried out to investigate the structural response of these columns under fire. The main parameters considered are load level and foamed concrete density; foamed concrete density used are 1500 kg/m3 and 1800 kg/m3 at 15%, 20%, and 25% load level. All the columns tested are without any external fire protection, with concentrically applied load under fixed-fixed boundary conditions. The columns dimension was 2400 mm long, 139.7 mm diameter and steel tube thickness of 6 mm. The fire test result showed that foamed concrete increases the fire resistance of steel hollow column up to an additional 16 minutes. The improvement is more at load level above 15%, and the gain in fire resistance is about 71% when 1500 kg/m3 density foamed concrete is used. Generally, foamed concrete filled steel hollow column demonstrate a good structural fire behavior, based on the applied load and foamed concrete density. Also, inward local buckling was averted by filling the steel hollow column with foamed concrete. General method for composite column design in Eurocode 4 adopted to calculate the axial buckling load of 1500 kg/m3 foamed concrete filled columns.  These type of columns can be used for structures like airports, schools, and stadiums; taking the advantage of exposed steel for aesthetic purpose and high fire resistance. It can also be used for high rise structures; taking advantage of high fire resistance and reduction in self-weight of a structure.


2018 ◽  
Vol 245 ◽  
pp. 03005 ◽  
Author(s):  
Marina Gravit ◽  
Elena Golub

The increase in the construction of high-rise, technically complex buildings and structures is a prerequisite for the widespread use of structures of heavy concrete. In this work, a special type of destruction of this type of concrete is considered in the fire action explosive spalling. One method of protection is polypropylene microfiber, the objective of which is to increase the fire resistance of concrete and reinforced concrete structures. The fire resistance tests of the reinforced concrete structure with the use of microfiber and without it have been carried out. It is shown that polypropylene microfiber can completely prevent explosive spelling of concrete. In addition, the introduction of additives in the form of fibrous materials into the concrete mix is the most optimal from the point of view of labor intensity and material costs.


2013 ◽  
Vol 831 ◽  
pp. 32-35
Author(s):  
Kyoung Woo Kim ◽  
Gab Cheol Jeong ◽  
Kwan Seop Yang

Because of the high-rise of apartment houses, diversity of planar forms, and need for environmental improvement, the development of eco-friendly dry materials becomes necessary. Dry wall panels should be easy enough to use that they can be installed and dismantled, and have fundamental performance items for dry wall (sound insulation, fire resistance, strength, specific gravity etc.). In this study, we intend to develop dry wall panels using eco-friendly and recyclable byproducts of a thermal power plant such as fly ash and bottom ash. With the performance items and level set to develop dry wall, we developed dry wall panels by adjusting mixing ratio.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Tongtong Zhang ◽  
Di Cao

The poor fire resistance characteristic of super high-rise curtain wall makes the curtain wall design one of the main approaches to improve its capacity for prevention and control over fire and smoke spread. The propagation of smoke leads to the increase in the temperature of the curtain wall on the upper and lower floors of the fire floor and consequently leads to glass fracture and other serious consequences. Current codes have control over fire resistance performance and size of fire partition materials but do not include requirements on the position of curtain walls on floors. By changing the position of fire partition in curtain walls, the paper carries out three comparative simulation experiments on two forms of fire partition: spandrel and fire prevention cornice. Besides, PyroSim is used to calculate the comparative simulation of fire and smoke spread and obtain the data on temperature variation nephogram and monitoring points in the center line of glass curtain walls during different fire scenarios, so as to discuss the influence of different positions of spandrels and fire canopy on fire hazard and smoke. This study finds out the following: fire canopy can better prevent the longitudinal spread of fire smoke than spandrels. The fire canopy above spandrels can reduce the flue-gas temperature. The higher the spandrels above floors, the faster the temperature of the central lines of glass curtain walls above fire floors reduced. However, the higher the spandrels above floors, the more uneven the distributions of high-temperature regions and low-temperature regions, thus leading to the increase in horizontal temperature differences of glass panels. This research conclusion can be taken as a reference for fire protection design of super high-rise glass curtain wall.


Sign in / Sign up

Export Citation Format

Share Document