Retrospective analysis of developments on the use of sterilization packaging materials for medical devices (literature review)

2020 ◽  
pp. 27-40
Author(s):  
Galina Nikolaevna Melnikova ◽  

The article discusses issues related to the creation and use of packaging materials for different types of products, including those specially designed for placing medical devices in them, before sterilization. The changes taking place related to the improvement of the barrier properties of packages to extend the preservation period of sterility of medical devices (both new types and complex in design) sterilized by different methods are noted. It is shown how over the course of several years new materials have been developed, technologies/methods of processing and reprocessing of raw materials and materials have changed, which make it possible to obtain packaging materials of different chemical nature and properties. Changes in existing packages from traditional materials (metal) to of single-use sterilization packages of a new generation with improved manufacturing technologies that provide mechanical, barrier and antimicrobial properties of packages differing in types, sizes, material properties are noted. The priority in the use of packaging materials for medical devices remains for materials that meet the requirements of GOST ISO 11607 "Packaging for medical devices subject to terminal sterilization", since the standard imposes more stringent requirements for the execution of packaging materials.

Author(s):  
Hsin Her Yu ◽  
Min-Hsun Cheng ◽  
Rong-Yuan Jou ◽  
Kuang-Chyi Lee ◽  
Chien-Chang Lin

With increasing global urbanization and industrialization, many more pipelines for gas, potable water, sewer, oil, and power cables have been installed underground, underwater, in buildings and in factories. Maintenance of such pipelines is crucial. However, it is often difficult and has become a growing problem these days. The PALTEM-HL (Trade mark and stands for Pipeline Automatic Lining SysTEM, Hose Lining Method), a pipeline relining system, was developed as an effective and inexpensive solution for this problem. In this project, we try to develop a new resins and the adhesives system to replace the raw materials used in the PALTEM-HL system. Anionic harder combined two different types of epoxy resins were investigated in this study. After curing, the mechanical properties and glass transition temperature of the mixture were examined and the optimum sample preparation prescription was also found. FTIR (Fourier Transform Infrared Spectroscopy) and DSC (Differential Scanning Calorimeter) were employed to monitor the curing process of the mixtures. The mechanical properties of the mixture were also measured by Instron and micro Vickers.


2021 ◽  
Vol 2021 ◽  
pp. 208-214
Author(s):  
A. Oruç ◽  
Y. Arıkan ◽  
E. İlanbey ◽  
K. Özşahin

An awareness of environmental issues is crucial for textile engineering due to increasing consumption of textile fibres. In addition, levels of pollution are ever increasing due to single use polymeric packaging materials in our daily life. Single use polymeric packaging materials, such as PET beverage bottles, have impacts on the consumption of raw materials and energy, on the contamination of our water and atmosphere, on human health, on global climate change. In this point of view, the ability of the textile producers to recycle the disposed PET beverage bottles into textile products has a critical importance. In this study, performance properties of knitted fabrics produced from rPET and cotton/rPET blended vortex and ring yarns are investigated to figure out the reproducibility of environmentally friendly textile products. For this aim, 100% rPET, 50-50% rPET-Co and 50-50% VPET-Co yarns were produced by Vortex and Ring Spinning technologies with same yarn number as Ne 30/1. Then the knitted fabric samples were produced from these sample yarns and the fabrics were dyed. Dimensional stability, bursting strength and pilling resistance properties of the fabrics were examined. Dimensional stability properties of rPET used fabrics were found to be similar with the ones which VPET used. Pilling resistance and bursting strength of the sample fabrics were close to each other that rPET usage does not demonstrate any disadvantage. Consequently, rPET fibre usage instead of VPET fibre is found to be appropriate.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 566 ◽  
Author(s):  
Petronela Nechita ◽  
Mirela Roman (Iana-Roman)

Paper and board show many advantages as packaging materials, but the current technologies employed to obtain adequate barrier properties for food packaging use synthetic polymers coating and lamination with plastic or aluminium foils—treatments which have a negative impact on packaging sustainability, poor recyclability and lack of biodegradability. Recently, biopolymers have attracted increased attention as paper coatings, which can provide new combinations in composite formulas to meet the requirements of food packaging. The number of studies on biopolymers for developing barrier properties of packaging materials is increasing, but only a few of them are addressed to food packaging paper. Polysaccharides are viewed as the main candidates to substitute oil-based polymers in food paper coating, due to their film forming ability, good affinity for paper substrate, appropriate barrier to gases and aroma, and positive effect on mechanical strength. Additionally, these biopolymers are biodegradable, non-toxic and act as a matrix for incorporation additives with specific functionalities for coated paper (i.e., active-antimicrobial properties). This paper presents an overview on the availability and application of polysaccharides from vegetal and marine biomass in coatings for foods packaging paper. The extraction methods, chemical modification and combination routes of these biopolymers in coatings for paper packaging are discussed.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2039 ◽  
Author(s):  
Hongbo Chen ◽  
Jingjing Wang ◽  
Yaohua Cheng ◽  
Chuansheng Wang ◽  
Haichao Liu ◽  
...  

As the IV generation of packaging, biopolymers, with the advantages of biodegradability, process ability, combination possibilities and no pollution to food, have become the leading food packaging materials. Biopolymers can be directly extracted from biomass, synthesized from bioderived monomers and produced directly by microorganisms which are all abundant and renewable. The raw materials used to produce biopolymers are low-cost, some even coming from agrion dustrial waste. This review summarized the advances in protein-based films and coatings for food packaging. The materials studied to develop protein-based packaging films and coatings can be divided into two classes: plant proteins and animal proteins. Parts of proteins are referred in this review, including plant proteins i.e., gluten, soy proteins and zein, and animal proteins i.e., casein, whey and gelatin. Films and coatings based on these proteins have excellent gas barrier properties and satisfactory mechanical properties. However, the hydrophilicity of proteins makes the protein-based films present poor water barrier characteristics. The application of plasticizers and the corresponding post-treatments can make the properties of the protein-based films and coatings improved. The addition of active compounds into protein-based films can effectively inhibit or delay the growth of microorganisms and the oxidation of lipids. The review also summarized the research about the storage requirements of various foods that can provide corresponding guidance for the preparation of food packaging materials. Numerous application examples of protein-based films and coatings in food packaging also confirm their important role in food packaging materials.


2020 ◽  
Vol 3 (6) ◽  
pp. 919-936
Author(s):  
Zeyang Yu ◽  
Yue Ji ◽  
Violette Bourg ◽  
Mustafa Bilgen ◽  
J. Carson Meredith

AbstractThe accumulation of synthetic plastics used in packaging applications in landfills and the environment is a serious problem. This challenge is driving research efforts to develop biodegradable, compostable, or recyclable barrier materials derived from renewable sources. Cellulose, chitin/chitosan, and their combinations are versatile biobased packaging materials because of their diverse biological properties (biocompatibility, biodegradability, antimicrobial properties, antioxidant activity, non-toxicity, and less immunogenic compared to protein), superior physical properties (high surface area, good barrier properties, and mechanical properties), and they can be assembled into different forms and shapes (powders, fibers, films, beads, sponges, gels, and solutions). They can be either assembled into packaging films or used as fillers to improve the properties of other biobased polymers. Methods such as preparation of composites, multilayer coating, and alignment control are used to further improve their barrier, mechanical properties, and ameliorate their moisture sensitivity. With the growing application of cellulose and chitin-based packaging materials, their biodegradability and recyclability are also discussed in this review paper. The future trends of these biobased materials in packaging applications and the possibility of gradually replacing petroleum-based plastics are analyzed in the “Conclusions” section.


2020 ◽  
Vol 20 (16) ◽  
pp. 1619-1632
Author(s):  
Katarzyna Pieklarz ◽  
Michał Tylman ◽  
Zofia Modrzejewska

The currently observed development of medical science results from the constant search for innovative solutions to improve the health and quality of life of patients. Particular attention is focused on the design of a new generation of materials with a high degree of biocompatibility and tolerance towards the immune system. In addition, apart from biotolerance, it is important to ensure appropriate mechanical and technological properties of materials intended for intra-body applications. Knowledge of the above parameters becomes the basis for considerations related to the possibilities of choosing the appropriate polymer materials. The researchers' interest, as evidenced by the number of available publications, is attracted by nanobiocomposites based on chitosan and carbon nanotubes, which, due to their properties, enable integration with the tissues of the human body. Nanosystems can be used in many areas of medicine. They constitute an excellent base for use as dressing materials, as they exhibit antimicrobial properties. In addition, they can be carriers of drugs and biological macromolecules and can be used in gene therapy, tissue engineering, and construction of biosensors. For this reason, potential application areas of chitosan-carbon nanotube nanocomposites in medical sciences are presented in this publication, considering the characteristics of the system components.


2021 ◽  
pp. 002199832110316
Author(s):  
Nuno Gama ◽  
B Godinho ◽  
Ana Barros-Timmons ◽  
Artur Ferreira

In this study polyurethane (PU) residues were mixed with residues of textile fibers (cotton, wool and synthetic fibers up to 70 wt/wt) to produce 100% recycled composites. In addition, the effect of the type of fiber on the performance of the ensuing composites was evaluated. The presence of fibers showed similar effect on the density, reducing the density in the 5.5-9.0% range. In a similar manner, the addition of fillers decreased their thermal conductivity. The 70 wt/wt wool composite presented 38.1% lower thermal conductivity when compared to the neat matrix, a reduction that was similar for the other type of fibers. Moreover, the presence of fillers yields stiffer materials, especially in the case of the Wool based composites, which with 70 wt/wt of filler content increased the tensile modulus of the ensuing material 3.4 times. This was attributed to the aspect ratio and stiffness of this type of fiber. Finally, the high-water absorption and lower thermal stability observed, especially in the case of the natural fibers, was associated with the hydrophilic nature of fibers and porosity of composites. Overall, the results suggest that these textile-based composites are suitable for construction and automotive applications, with the advantage of being produced from 100% recycled raw-materials, without compromised performance.


2021 ◽  
Vol 11 (14) ◽  
pp. 6445
Author(s):  
David Ibarra ◽  
Raquel Martín-Sampedro ◽  
Bernd Wicklein ◽  
Úrsula Fillat ◽  
María E. Eugenio

Motivated by the negative impact of fossil fuel consumption on the environment, the need arises to produce materials and energy from renewable sources. Cellulose, the main biopolymer on Earth, plays a key role in this context, serving as a platform for the development of biofuels, chemicals and novel materials. Among the latter, micro- and nanocellulose have been receiving increasing attention in the last few years. Their many attractive properties, i.e., thermal stability, high mechanical resistance, barrier properties, lightweight, optical transparency and ease of chemical modification, allow their use in a wide range of applications, such as paper or polymer reinforcement, packaging, construction, membranes, bioplastics, bioengineering, optics and electronics. In view of the increasing demand for traditional wood pulp (e.g., obtained from eucalypt, birch, pine, spruce) for micro/nanocellulose production, dedicated crops and agricultural residues can be interesting as raw materials for this purpose. This work aims at achieving microfibrillated cellulose production from fast-growing poplar and olive tree pruning using physical pretreatment (PFI refining) before the microfibrillation stage. Both raw materials yielded microfibrillated cellulose with similar properties to that obtained from a commercial industrial eucalypt pulp, producing films with high mechanical properties and low wettability. According to these properties, different applications for cellulose microfibers suspensions and films are discussed.


2019 ◽  
Vol 9 (1) ◽  
pp. 196-201
Author(s):  
Jacek Gołaszewski ◽  
Grzegorz Cygan ◽  
Tomasz Ponikiewski ◽  
Małgorzata Gołaszewska

AbstractThe main goal of the presented research was to verify the possibility of obtaining ecological self-compacting concrete of low hardening temperature, containing different types of cements with calcareous fly ash W as main component and the influence of these cements on basic properties of fresh and hardened concrete. Cements CEM II containing calcareous fly ash W make it possible to obtain self-compacting concrete (SCC) with similar initial flowability to analogous mixtures with reference cement CEM I and CEM III/B, and slightly higher, but still acceptable, flowability loss. Properties of hardened concretes with these cements are similar in comparison to CEM I and CEM III concretes. By using cement nonstandard, new generation multi-component cement CEM “X”/A (S-W), self-compacting concrete was obtained with good workability and properties in hardened state.


Sign in / Sign up

Export Citation Format

Share Document