scholarly journals Performance of recycled PET and conventional PES fibers in case of watertransport properties

2020 ◽  
Vol 71 (06) ◽  
pp. 538-544
Author(s):  
MEHDI HATAMLOU ◽  
ARIF TANER ÖZGÜNEY ◽  
NILGÜN ÖZDİL ◽  
GAMZE SÜPÜREN MENGÜÇ

In recent years the researches on liquid moisture transport properties of fabrics have great importance. Especially forthe sport garments, fabric structure should led liquid moisture to transfer from skin surface to the outer layers. Specialfibers and fabric structures were designed including channelled fibers and micro fiber productions to contribute highercapillary transport capability to the textile surface. Polyester fibers are used for this purpose frequently. Due to theincrease in the demand of sustainable textiles, production and consumption of recycled polyester fibers are increasingrecently. They are expected to have adequate mechanical properties to fulfil requirements. In this study, liquid moisturetransfer properties of the polyester and r-PET fabrics were investigated. For this purpose, knitted fabrics produced from100% polyester and 100% r-PET yarns were used. Dynamic liquid transport properties, capillary transfer property, dryingrate and water absorption capacity of these surfaces were measured. According to the results, it was concluded thatboth fabrics were identified as “good” by using “Moisture Management Tester”, in case of liquid moisture transferproperties. No significant difference was determined between water vapour permeability values. Static immersion test ishelpful in order to determine wettability for the identification of sensitive differences and as a conventional method,vertical wicking test is a good indicator while distinguishing capillarity differences. It was found that r-PET fabric hasbetter results than PES fabric, in case of absorption rate, wettability, drying rate and capillarity.

2016 ◽  
Vol 87 (7) ◽  
pp. 807-815 ◽  
Author(s):  
Seong-ok Kwon ◽  
Jooyoun Kim ◽  
Myoung-Woon Moon ◽  
Chung Hee Park

This study investigated moisture management properties of a single-faced superhydrophobic fabric. A single-faced superhydrophobic lyocell fabric, where one face of the surface is superhydrophobic and the opposite face is hydrophilic, was produced by a two-step plasma process on one side of the fabric: (1) the addition of nano-scale roughness by 5 minutes of O2 plasma etching; (2) subsequent 30 seconds of plasma enhanced chemical vapor deposition with hexamethyldisiloxane to lower the surface energy of lyocell fibers. As a result, the superhydrophobic lyocell fabric exhibited water repellency with a static water contact angle greater than 161° on the treated surface, allowing water absorption from the untreated face. The nanometer depth of the superhydrophobic layer in the hydrophilic textile affected water absorption capacity, drying rate, vertical wicking rate, and moisture management properties. The air permeability and water vapor transmission rate of the superhydrophobic treated lyocell fabric were hardly changed. The superhydrophobic properties were maintained after a gentle wash cycle, although the level of superhydrophobicity was reduced, especially when it was washed with detergent. This superhydrophobic and moisture managing textile would be relevant for an application that requires a water repellent property on one face and water absorbing property on the opposite face, such as medical operation gowns, wound dressings, and hygienic products.


2021 ◽  
pp. 65-73
Author(s):  
Owuno Friday ◽  
Achinewu Simeon Chituru

Chin-Chin, a traditional Nigerian snack was prepared utilizing wheat-fermented maize residue composite flour at 0 – 30% replacement levels. Effects of this addition on the functional and pasting properties of the flour composite was evaluated. The snack produced was also evaluated for its sensory attributes, proximate composition and invitro-protein digestibility (IVPD). Functional properties results showed an increase in water absorption capacity (WAC), a decrease in oil absorption capacity (OAC), decrease in Bulk Density (BD), swelling power and solubility index with residue addition. Pasting property results showed a drop in the value of peak, trough, breakdown and final viscosity with substitution while set back viscosity increased.Peak temperature decreased, but values for pasting temperature showed no significant difference between the control and the blends. Results for sensory evaluation showed equal preference for overall acceptability. Proximate composition results showed residue addition led to an increase in crude fibre and protein content with a drop in the carbohydrate value. Residue addition did not increase protein digestibility. Addition of fermented maize residue in chin-chin production can be another way of utilizing the fibre rich by-product of the production of fermented maize starch.


2019 ◽  
Vol 27 (3(135)) ◽  
pp. 85-90 ◽  
Author(s):  
Wioleta Serweta ◽  
Zbigniew Olejniczak ◽  
Małgorzata Matusiak

The main goal of this paper was to analyse the hygienic properties of textile packages used for the construction of shoe uppers. Distance fabrics with varied hygienic properties were the basis of these packages. The discomfort indexes, which describe changes in footwear microclimate, were calculated according to the moisture absorbance capacity and temperature changes in the immediate surrounding of the foot skin surface. The experiment was done for a group of grain leather uppers, where the Grubbs test (a = 0.05) gave positive information about the outliers, describing such parameters as the water vapour permeability and water vapour coefficient. The phase changes of the shoe microclimate were detected via temperature and relative humidity sensors during simulation of the shoes used via an elliptical trainer for a group of 7 men. Statistically significant differences between the packages’ upper – lining confirmed the possibility of monitoring the circulation of biophysical mediums inside a footwear volume. The appropriate choice of package materials could raise the comfort conditions for users. For certain material configurations the microclimate conditions described by the discomfort index were improved.


2020 ◽  
pp. 11-22
Author(s):  
O. O. Tanko ◽  
T. O. Hussaina ◽  
N. S. Donaldben

The research is aimed at adding value to sweet potato based biscuits using underutilized crops such as cashew nuts. The objective of the study was to add value to sweet potato based biscuits, the sweet potato was processed into flour; while the cashew nuts was unroasted cashew nuts were sorted to remove the stones, dirt’s and unwholesome cashew nuts, roasted, shelled, dried, peeled and processed into flour and sieved. The cashew nuts flour was substituted at 20, 30, 40 and 50% into sweet potato flour to produce sweet potato and cashew nuts composite flour were  used for the production of biscuits. Functional, proximate composition of the biscuits, physical and sensory properties of composite biscuits were determined. Significance difference (P<0.05) was observed Bulk density, water absorption capacity, oil absorption capacity, swelling capacity, emulsion activity, foaming stability and gelatinization temperature increased from 0.62 to 0.73 g/cm3, 1.31 to 1.81 g/g, 2.10 to 2.22 g/g, 6.42 to 7.18 ml, 59.71 to 60.51%, 6.19 to 6.43% and 68.20 to 72.10ºC, respectively with an increase in the addition of cashew nuts flour. The crude protein, crude fat, crude fibre and ash increase from 14.65 to 18.31%, 7.88 to 10.21%, 3.21 to 3.51% and 4.10 to 4.76% respectively; while the moisture and carbohydrate content of the biscuits decreased from 13.77 to 13.31% and 56.39 to 49.89%, respectively with increase in the addition of the cashew nuts flour. The physical properties of the composite biscuits such as the weight, thickness, diameter and spread ratio ranged from 16.09 to 17.45 g, 10.87 to 10.96 mm, 38.94 to 40.02 mm and 3.56 to 3.60 respectively. The average means scores for the appearance, crispness, taste, aroma and overall acceptability increase were observed. There was a significant difference (p<0.05) in the appearance, taste and aroma while there was no significant difference (p>0.05) in the crispness and overall acceptability.


2018 ◽  
Vol 85 (2) ◽  
pp. 201-203 ◽  
Author(s):  
Chunhe Yang ◽  
Gan Li ◽  
Xiaojun Zhang ◽  
Xianhong Gu

The objectives of the research reported in this Research Communication were to compare the variation of hind quarter skin surface temperature pre- and post- milking in dairy cows and to determine the optimal time to capture images by infrared thermography for improving the sensitivity and specificity of mastitis detection in dairy cows. Hind quarter infrared images of 102 Holstein dairy cows were captured from the caudal view by an infrared camera pre-milking and post-milking. The udder skin surface temperature was measured with the help of the image processing software. No significant difference was found between the left and right quarter skin surface temperature pre- and post- milking. The hind quarter skin surface temperature pre-milking was not significantly influenced by milk yield, but exhibited a rising trend along with the increase of milk yield. The hind quarter skin surface temperature post-milking was significantly influenced by milk yield. This leads us to conclude that the sensitivity and specificity of IRT in mastitis detection may be influenced by milk yield and it may be better to capture the infrared images of cow udders pre-milking.


2017 ◽  
Vol 48 (4) ◽  
pp. 738-760 ◽  
Author(s):  
T Suganthi ◽  
P Senthilkumar

Thermo-physiological comfort of the fabric is attained through the ability of managing heat and transmission of sensible and insensible perspiration. An investigation on influence of tri-layer knitted structure on thermal comfort characteristics of layered knitted fabrics was carried out. Three tri-layer knitted structures were developed in which inner layer was made up of micro-fibre polyester and outer layer was made up of modal yarn. The yarn used in the middle layer was changed to either micro-fibre polyester or polyester or acrylic yarn. The thermal comfort characteristics such as thermal conductivity, air permeability, water vapour permeability, wicking, moisture absorbency, drying rate and moisture management properties have been analysed. Wear trial was conducted for shuttle badminton players and they were ranked using thermal environment subjective judgement scale. Tri-layer knitted structure with micro-fibre polyester in the inner and middle layer and modal in the outer layer showed better thermal comfort characteristics both by objective evaluation and wear trial method compared to polyester or acrylic in the middle layer and is preferable for shuttle badminton sportswear.


2016 ◽  
Vol 5 (5) ◽  
pp. 67
Author(s):  
Victoria G. Aguilar-Raymundo ◽  
Jorge F. Vélez-Ruíz

Considering the nutritional and functional characteristics of chickpea, flours of two varieties of chickpea (“Blanco Noroeste” and “Costa 2004”) were prepared to know the effect of cooking. Thus the objective of this study was to compare their physicochemical and functional properties in both, raw and cooked flours. Physical properties of the grain, for the two varieties were similar, whereas the physicochemical and functional properties of the flours exhibited differences as a function of the variety and the processing. The chickpea cooked flours showed lower lightness and higher redness and yellowness with respect to raw flours. The proximal composition of cooked flours presented significant differences in fat (5.98% - 6.09%) and moisture contents (0.48% - 0.54%) with respect to raw flours. The particle size distribution determined for the raw and cooked flours samples, indicated a unimodal behavior with a wide distribution. The water absorption capacity and oil capacity showed significant difference among flour varieties. For pasting properties, a higher viscosity was measured for Costa 2004 (380 cP) and Blanco Noroeste (272 cP) raw flours, raw flour exhibited better pasting properties than cooked flours. 


2014 ◽  
Vol 14 (3) ◽  
pp. 174-178 ◽  
Author(s):  
Viera Glombikova ◽  
Petra Komarkova

Abstract This study evaluates the efficiency of non-flammable functional underwear used as a secondary heat barrier in extreme conditions. Five groups of knitted fabrics were analysed for flame resistance and selected physiological properties (water vapour permeability, air permeability, thermal resistance and liquid moisture transport by moisture management transport). The results indicated similar levels of flame resistance for the materials tested but show important differences in terms of physiological characteristics, namely liquid moisture transport, which influences the safety and comfort of protective clothing.


2008 ◽  
Vol 14 (6) ◽  
pp. 487-495 ◽  
Author(s):  
B.K. Tiwari ◽  
U. Tiwari ◽  
R. Jagan Mohan ◽  
K. Alagusundaram

Physicochemical, functional, pasting, and cooking properties of dehulled pigeon pea (Cajanus cajan L) splits and flour processed by different pre-treatments (dry, wet, and newly proposed hydrothermal pretreatment) were studied. There was no significant difference ( p < 0.05) in protein and carbohydrate content of pre-treated pigeon pea samples except ash content for wet method and lipid content for dry method. Significant differences were observed in some physicochemical properties such as physical dimensions, hydration, and swelling capacity. Water absorption and oil absorption capacity were significantly higher for hydrothermally pre-treated grain with reduced foaming capacity and stability as compared to other pre-treatments. Pasting profile of hydrothermally treated pigeon pea showed lower value on peak viscosity (0.90Pa.s) and breakdown (0.002Pa.s), with higher pasting temperature (87.5°C). Hydrothermally treated pigeon pea splits were found to be superior in terms of cooking properties compared to other pre-treatments.


2013 ◽  
Vol 687 ◽  
pp. 532-537
Author(s):  
J. Garabito ◽  
A. Rodríguez ◽  
S. Gutierrez ◽  
V. Calderón

We use lime mortar in historic building’s interventions instead of cement mortars, due to its better compatibility with the masonry walls. The objective of the present research is to examine the behavior of a traditional lime mortar by the addition of polyamide powder waste. In certain circumstances we need to improve the mortar properties, such as increasing its impermeability while maintaining its breathability. This happens when we need to coat the filling of a stone wall that has been exposed to the outside. First of all we study the properties of a traditional lime mortar, as a reference. Then we replace aggregates using polyamide powder waste with different dosages. Subsequently we carry out some studies on the resulting mortars, through a series of tests, such as water vapour permeability and water absorption capacity through capillarity. Finally we check if the hydrophobic behavior improves, while maintaining the capacity of vapour transpiration.


Sign in / Sign up

Export Citation Format

Share Document