scholarly journals VARIABILITY OF THE MAIN CLIMATIC INDICATORS IN THE TERRITORY OF THE VOLGA FEDERAL DISTRICT IN THE PERIOD 1966-2018

Author(s):  
Yu.P. Perevedentsev ◽  
E.M. Parubova ◽  
K.M. Shantalinsky ◽  
M.A. Myagkov ◽  
B.G. Sherstyukov

The spatio-temporal variability of air temperature and humidity, atmospheric precipitation in the Volga Federal District in 1966-2018 is considered. As a result of statistical processing of data from 20 weather stations, a clear warming trend in recent decades and a weak increase in annual precipitation are revealed, except for the south-east of the region. The annual variation of water vapor pressure and relative humidity is considered, statistics of the distribution of "dry" and "wet" days by stations in different months are carried out. Correlations between individual circulation modes (AO, NAO, SCAND, EAWR) and air temperature are revealed. It is shown that positive relationships are closer in winter with the AO and NAO indices than in summer. A sufficiently high negative correlation is established with the SCAND index in winter (r = -0,7), and with the EAWR index in summer (the correlation coefficient reaches a value of -0,6).

2009 ◽  
Vol 13 (3) ◽  
pp. 357-366 ◽  
Author(s):  
Z. T. Cong ◽  
D. W. Yang ◽  
G. H. Ni

Abstract. One expected consequence of global warming is the increase in evaporation. However, lots of observations show that the rate of evaporation from open pans of water has been steadily decreasing all over the world in the past 50 years. The contrast between expectation and observation is called "evaporation paradox". Based on data from 317 weather stations in China from 1956 to 2005, the trends of pan evaporation and air temperature were obtained and evaporation paradox was analyzed. The conclusions include: (1) From 1956 to 2005, pan evaporation paradox existed in China as a whole while pan evaporation kept decreasing and air temperature became warmer and warmer, but it does not apply to Northeast and Southeast China; (2) From 1956 to 1985, pan evaporation paradox existed narrowly as a whole with unobvious climate warming trend, but it does not apply to Northeast China; (3) From 1986 to 2005, in the past 20 years, pan evaporation paradox did not exist for the whole period while pan evaporation kept increasing, although it existed in South China. Furthermore, the trend of other weather factors including sunshine duration, windspeed, humidity and vapor pressure deficit, and their relations with pan evaporation are discussed. As a result, it can be concluded that pan evaporation decreasing is caused by the decreasing in radiation and wind speed before 1985 and pan evaporation increasing is caused by the decreasing in vapor pressure deficit due to strong warming after 1986. With the Budyko curve, it can be concluded that the actual evaporation decreased in the former 30 years and increased in the latter 20 year for the whole China.


2020 ◽  
Vol 12 (2) ◽  
pp. 218 ◽  
Author(s):  
José Antonio Sobrino ◽  
Yves Julien ◽  
Susana García-Monteiro

The Intergovernmental Panel on Climate Change regular scientific assessments of global warming is based on measurements of air temperature from weather stations, buoys or ships. More specifically, air temperature annual means are estimated from their integration into climate models, with some areas (Africa, Antarctica, seas) being clearly underrepresented. Present satellites allow estimation of surface temperature for a full coverage of our planet with a sub-daily revisit frequency and kilometric resolution. In this work, a simple methodology is developed that allows estimating the surface temperature of Planet Earth with MODIS Terra and Aqua land and sea surface temperature products, as if the whole planet was reduced to a single pixel. The results, through a completely independent methodology, corroborate the temperature anomalies retrieved from climate models and show a linear warming trend of 0.018 ± 0.007 °C/yr.


Climate ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 89 ◽  
Author(s):  
Valdir Adilson Steinke ◽  
Luis Alberto Martins Palhares de Melo ◽  
Mamedes Luiz Melo ◽  
Rafael Rodrigues da Franca ◽  
Rebecca Luna Lucena ◽  
...  

This study was designed to identify trends in maximum, minimum, and average air temperatures in the Federal District of Brazil from 1980 to 2010, measured at five weather stations. Three statistical tests (Wald–Wolfowitz, Cox–Stuart, and Mann–Kendall) were tested for their applicability for this purpose, and the ones found to be most suitable for the data series were validated. For this data sample, it was observed that the application of the Wald–Wolfowitz test and its validation by the Cox–Stuart and Mann–Kendall tests was the best solution for analyzing the air temperature trends. The results showed an upward trend in average and maximum air temperature at three weather stations, a downward trend at one, and the absence of any trend at two. If the trend of increasing air temperature in the Federal District persists, it could have a negative impact on various sectors of society, mainly on the health of the population, especially during the dry season when more cases of respiratory diseases are registered. These results could serve as inputs for public administrators involved in the planning and formulation of public policies.


2013 ◽  
Vol 34 (2) ◽  
pp. 213-235 ◽  
Author(s):  
Marek Kejna ◽  
Andrzej Araźny ◽  
Ireneusz Sobota

Abstract The climatic change on King George Island (KGI) in the South Shetland Islands, Antarctica, in the years of 1948-2011 are presented. In the reference period, a statistically significant increase in the air temperature (0.19ºC/10 years, 1.2ºC in the analysed period) occurred along with a decrease in atmospheric pressure (−0.36 hPa/10 years, 2.3 hPa). In winter time, the warming up is more than twice as large as in summer. This leads to decrease in the amplitude of the annual cycle of air temperature. On KGI, there is also a warming trend of daily maximum and daily minimum air temperature. The evidently faster increase in daily minimum results in a decrease of the diurnal temperature range. The largest changes of air pressure took place in the summertime (−0.58 hPa/10 years) and winter (−0.34 hPa/10 years). The Semiannual Oscillation pattern of air pressure was disturbed. Climate changes on KGI are correlated with changing surface temperatures of the ocean and the concentra− tion of sea ice. The precipitation on KGI is characterised by substantial variability year to year. In the analysed period, no statistically significant trend in atmospheric precipitation can be observed. The climate change on KGI results in substantial and rapid changes in the environment, which poses a great threat to the local ecosystem.


2020 ◽  
Vol 82 ◽  
pp. 149-160
Author(s):  
N Kargapolova

Numerical models of the heat index time series and spatio-temporal fields can be used for a variety of purposes, from the study of the dynamics of heat waves to projections of the influence of future climate on humans. To conduct these studies one must have efficient numerical models that successfully reproduce key features of the real weather processes. In this study, 2 numerical stochastic models of the spatio-temporal non-Gaussian field of the average daily heat index (ADHI) are considered. The field is simulated on an irregular grid determined by the location of weather stations. The first model is based on the method of the inverse distribution function. The second model is constructed using the normalization method. Real data collected at weather stations located in southern Russia are used to both determine the input parameters and to verify the proposed models. It is shown that the first model reproduces the properties of the real field of the ADHI more precisely compared to the second one, but the numerical implementation of the first model is significantly more time consuming. In the future, it is intended to transform the models presented to a numerical model of the conditional spatio-temporal field of the ADHI defined on a dense spatio-temporal grid and to use the model constructed for the stochastic forecasting of the heat index.


2021 ◽  
pp. 87-99
Author(s):  
G. KH. ISMAIYLOV ◽  
◽  
N. V. MURASCHENKOVA ◽  
I. G. ISMAIYLOVA

The results of the analysis and assessment of changes in annual and seasonal characteristics of hydrometeorological processes in a private catchment area of the Kuibyshev hydroelectric complex of the Volga river are presented. To analyze the temporal dynamics of the variability of the annual and seasonal characteristics of the hydrometeorological processes in the considered territory of the river basin we used more than 100 years of observations of annual and seasonal fluctuations of lateral inflow, total atmospheric precipitation and air temperature regimes on the Volgariver. Relationship equations for annual and seasonal changes in hydrometeorological characteristics in time are obtained. It was found that long-term fluctuations of hydrometeorological processes (lateral inflow, total atmospheric precipitation and air temperature) are characterized by tendencies (trends). The analysis of these trends showed that the non-standard climatic situation, starting from the 70s of the last century, had a very significant impact on the distribution of annual and especially on the seasonal (low-water and winter) characteristics of hydrometeorological processes. It has been established that non-standard unidirectional changes are found in the fluctuations in the total atmospheric precipitation. If the winter total precipitation is characterized over the 100-year period in question by a continuously decreasing trend,the summer-autumn period is an increasing trend. This leads to the fact that long-term fluctuations in total precipitation during the period of low water are formed as a stationary process. At the same time, the total precipitation of the spring flood and inflowing to the Kuibyshev hydroelectric unit is characterized by a constantly increasing trend.


Author(s):  
Maria Nedealcov ◽  

The early manifestation of the seasons and seasonal temperature's increasing trend for all seasons require adequate solutions of adaptation to climate change. Knowledge of the spatio-temporal variability of climatic parameters that characterize the seasons, focusing on the last decades - a period of time when climatic variability is even more pronounced compared to previous periods, is of particular interest. Analysis of the density of the seasonal average temperature distribution function indicates a shift to the right for the values, which demonstrates warming trend for all the seasons. The highest accelerated rhythm belongs to winters and summers, and in this context the duration of the seasons and the accumulation of daily temperatures with a certain thermal threshold is also changing.


Author(s):  
V.V. Guryanov ◽  
A.K. Sungatullin

The spatio-temporal variability of the average values of temperature indices of climate extremity in the territory of the European part of Russia (ER) in 1980-2019 is presented. To calculate the extremeness indices, we used hourly data on the maximum and minimum temperatures obtained using the ERA5 reanalysis on a 1°´1° spatial grid. Statistical processing of the index values revealed an increase in the temperature indices TNX, TNN, TXN, TXX, associated with the minimum and maximum temperatures, with the exception of the north and southeast of the region. An increase in the number of sunny days and a decrease in the number of frosty days were also revealed.


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 402 ◽  
Author(s):  
Xiaoxue Wang ◽  
Yuguo Li ◽  
Xinyan Yang ◽  
Pak Chan ◽  
Janet Nichol ◽  
...  

The street thermal environment is important for thermal comfort, urban climate and pollutant dispersion. A 24-h vehicle traverse study was conducted over the Kowloon Peninsula of Hong Kong in summer, with each measurement period consisting of 2–3 full days. The data covered a total of 158 loops in 198 h along the route on sunny days. The measured data were averaged by three methods (direct average, FFT filter and interpolated by the piecewise cubic Hermite interpolation). The average street air temperatures were found to be 1–3 °C higher than those recorded at nearby fixed weather stations. The street warming phenomenon observed in the study has substantial implications as usually urban heat island (UHI) intensity is estimated from measurement at fixed weather stations, and therefore the UHI intensity in the built areas of the city may have been underestimated. This significant difference is of interest for studies on outdoor air temperature, thermal comfort, urban environment and pollutant dispersion. The differences were simulated by an improved one-dimensional temperature model (ZERO-CAT) using different urban morphology parameters. The model can correct the underestimation of street air temperature. Further sensitivity studies show that the building arrangement in the daytime and nighttime plays different roles for air temperature in the street. City designers can choose different parameters based on their purpose.


Sign in / Sign up

Export Citation Format

Share Document