scholarly journals Toksisitas Merkuri (Hg) pada struktur jaringan ikan

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Tamrin A. Ibrahim ◽  
Muhammad Aris

The problem of pollution that occurs in the aquatic environment is getting out of control and causes the degradation of fishery resources which are important for humans. One of the pollutants from industrial activities is heavy metal. There are various kinds of heavy metals, mercury (Hg) is the most dangerous heavy metal. Mercury (Hg) enters directly into the waters through rainwater and leaching the soil and river flows which are then absorbed and metabolized by microorganisms. Mercury (Hg) is difficult to degrade from the body, because mercury (Hg) is actively involved in the food chain. Microorganisms feed molluscs, crustaceans and fish which are a source of protein for humans. Mercury (Hg) toxicity in fish can result in a stress response in fish which results in impaired growth, immune system, and changes in tissue structure. This brief review aimed to enrich the scientific repertoire of the toxicity of mercury (Hg) in fish and its effects on humans. This review was a non-experimental research by conducting research around the literature

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Muhammad Aris ◽  
Tamrin A. Ibrahim ◽  
Lidiawati Nasir

The development and progress in the mining industry has created an opportunity for the concentration of heavy metals to increase uncontrolled in waters and lead to degradation of fishery resources. Heavy metals are one of the pollutants from industrial activities that enter directly into the waters through rainwater and soil washing and river flows which are then absorbed and metabolized by microorganisms. Heavy metals are difficult to degrade and are actively involved in the food chain. Microorganisms feed molluscs, crustaceans and fish which are a source of protein for humans. Nickel metal (Ni) is a metal that can cause a stress response in fish which results in impaired growth, immune system, and changes in tissue structure. This brief review aims to enrich the scientific repertoire of nickel (Ni) metal contamination in fish and its impact on humans. This review is a non-experimental research by conducting research around the literature


2017 ◽  
Vol 43 (2) ◽  
pp. 207-222 ◽  
Author(s):  
MN Mondol ◽  
A Asia ◽  
AS Chamon ◽  
SMA Faiz

An investigation was made at Hazaribagh Tannery area, comprising about 145 industries in Dhaka Metropolitan area. The analyses of soil and plant samples showed that heavy metals contribute significantly towards environmental contamssination resulting from industrial activities. Concentration of heavy metals (Cr, Zn, Pb, Cd, Mn, Fe and Ni) in soil and plant samples cross the MAC (Maximum allowable concentration) in both wet and dry season. In case of soil sample the highest concentration of Cr (172792 ppm) was found at main disposal point. Chromium, Zn, Pb, Cd, Mn, Fe and Ni concentrations at Hazaribagh plant samples respectively ranged from 171-1348, 247-777, 45-96, 1.66-2.17, 72-231, 354-787, and 18-38 ppm respectively in dry season and 75-1142, 209-691, 29- 84, 1.02-2.00, 66-124, 331-664, 11-37 ppm respectively in wet season. Concentration went down gradually with increasing distance from the main disposal point (spot 1). But again high concentration (150708 ppm of Cr) was noted in spot 6. Similar results were found for plant samples. High concentrations of heavy metals were found in plant samples which consequently affect food chain, which may be a major environmental concern. Asiat. Soc. Bangladesh, Sci. 43(2): 207-222, December 2017


2020 ◽  
Vol 7 (2) ◽  
pp. 198
Author(s):  
Oluwafunso Oladipo Awosusi ◽  
Adeshina Luqman Adisa

Heavy metal pollution has been a source of health problems in humans. These metals are persistent, toxic, non-degradable and often take a long time to be eliminated from the body. This study is, therefore, designed to assess heavy metal pollution of River Basin in Nigeria. Seventy stream sediment samples were systematically collected from an area, approximately 400km2, latitude 7O 00’ and 7O 15’N and longitude 5O 11’ and 5O 19’E. The pollution status of the sediments by heavy metals were assessed by Enrichment Factor (EF), Pollution Load Index (PLI) and Geo-accumulation Index (Igeo). The concentrations of the heavy metals were also compared with United States Environmental Protection Agency (USEPA) Sediment quality guidelines (SQG). The samples were dried in the laboratory, disaggregated, sieved to minus 80 (<177 microns) mesh size using nylon sieve. The sieved samples were, then, digested and the concentrations of As, Co, Fe, Mn, Ni, Pb, V and Zn were determined by Wavelength Dispersive X-ray Fluorescence Spectrometry (WD-XRFS). Results revealed that the mean concentrations of the heavy metals are in the order V>Zn>Pb>As>Ni>Co>Fe>Mn. Furthermore, the mean concentration of lead exceeded both the average world shale and the USEPA SQG values. However, the mean concentration of cobalt, nickel, manganese and zinc were lower than the average world shale values for these elements. The Enrichment Factor (EF) revealed that cobalt was moderately enriched while arsenic and lead were significantly enriched in the sediments. On the basis of the geoaccumulation index, the stream sediments were largely uncontaminated except at some sites that were moderately to strongly contaminated by As and Pb.  


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Upoma Mahmud ◽  
Md. Tareq Bin Salam ◽  
Abu Shamim Khan ◽  
Md. Mizanur Rahman

AbstractHigher accumulation of heavy metals in food grains is one of the leading problems for carcinogenic effects in the body. That’s why; scientists have taken this problem as a potential indicator for ensuring safe food. The present study was carried out to assess the ecological risk of heavy metals such as nickel, copper, arsenic, lead, and manganese in agricultural soil and transfer status to rice grain. Soil samples were collected from four agricultural fields at different times in the Dumuria Upazila under Khulna district in Bangladesh. Heavy metal concentration in soil extracts, irrigation water samples, and grain samples was determined by Atomic Absorption Spectrometer. Average metal concentrations in soil were calculated and compared with the reference value in soil. In most cases, heavy metals in agricultural soil (Ni: 61.73–94.52 mg/kg; Cu: 23.33–37.5 mg/kg; As: 7.53–19.63 mg/kg; Pb: 15.17–29.19 mg/kg; Mn: 322.98–478.45 mg/kg) were greater than the reference soil (Ni: 13.08–24.55 mg/kg; Cu: 10.35–13.28 mg/kg; As: 1.87–4.61 mg/kg; Pb: 4.88–8.27 mg/kg; Mn: 52.17–74.3 mg/kg). Overall risk index stated that the examined soils were at moderate risk of contamination. Transfer Factor of arsenic (0.018–0.032 mg/kg) and manganese (0.059–0.155 mg/kg) was higher from soil to rice grain. On the other hand, transfer factor of lead was found negligible that is a good sign of improvement. The findings of the study will be good documentation for planning, risk assessment, and decision-making by environmental managers in this region.


2021 ◽  
Vol 322 ◽  
pp. 01022
Author(s):  
Lisbet Sagala ◽  
Sulistiono ◽  
Djamar T.F.L. Batu

Banten Bay is an area affected by industrial, shipping, and domestic activities. These have the potential to produce wastes in the form of heavy metals and can accumulate in the body of aquatic organisms such as the splendid ponyfish Eubleekeria splendens (Cuvier, 1829). This study aimed to determine the accumulation of heavy metals Hg, Cd, Pb, and Cu in splendid ponyfish Eubleekeria splendens (Cuvier, 1829) meat in Banten Bay, Serang Regency, Banten Province. Sampling was carried out for three months, from August to October 2020. Analysis of heavy metal content was carried out using AAS (Atomic Absorption Spectrophotometer). The content of heavy metals Hg, Cd, Pb, and Cu in splendid ponyfish meat were <0.030 mg/kg, <0.001 mg/kg, <0.005 mg/kg, and 0.224-0.437 mg/kg. Bioaccumulation of heavy metals Hg, Cd, Pb, and Cu in small and big splendid ponyfish meat has a low accumulation rate. During the observation period, the heavy metal content of Hg, Cd, Pb, and Cu in small and big splendid ponyfish meat was not significantly different.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Albert M. Oyugi ◽  
Joshua K. Kibet ◽  
John O. Adongo

Abstract Background There is an exponential rise in the use of farming chemicals in agricultural practices ostensibly to increase food production. The chewing of fresh khat leaves and shoots has spread across the world from ancient khat producing regions in East Africa and the Arabian Peninsula. Khat is a well-established socialization substance with stimulating characteristics. In this work, we have reviewed the deleterious impacts of several heavy metals such as lead, cadmium, iron in the khat plant and their health impacts. Survey on the health complications of farming chemicals used in khat production is also presented. Main body of the abstract The toxic effects of heavy metals and farming chemicals in plant matter such as khat leaves are a serious health concern. Heavy metals including cadmium (Cd) and lead (Pb), for instance, bio-accumulate in the body and the food chain as precursors for disease. It has been established that blood that has lead levels of 40–60 ug/dL is a precursor for serious health illnesses such as cardiac arrest and cancer. On the other hand, cadmium is reported to bind itself onto metallothioneins hence forming cadmium–metallothionein complex that is transported to all body organs causing deleterious cell damage. The entry of farming chemical into the food chain especially via the chewing of contaminated khat has been known to contribute to health problems such as cancer, hypertension and liver cirrhosis. khat is branded a ‘substance of abuse’ by the World Health Organization (WHO) because of the adverse health risks it causes to humans. Relevant articles published between 2010 and 2021, and archived in PubMed, Google Scholar, Medley, Cochrane, and Web of Science were used in this review. Short conclusion The health implications of heavy metals and farming chemicals arising from the consumption of contaminated khat shoots are a serious concern to the khat chewing community. Consequently, there is need to develop better farming practices that may minimize the absorption of heavy metals and farming chemicals by the khat plant. Information presented in this review is also important in sensitizing policy makers to advance control measures towards safer khat farming practices.


Author(s):  
Sani Daniel Eneji ◽  
Matthew Chijioke Apeh ◽  
Enyojo Samson Okwute ◽  
Alowakennu Micheal ◽  
Kayode Ibrahim Fesomade

This study aims at determining the concentration of heavy metal contaminants in the soil around Dangote cement factory Kogi State, Nigeria. It also seeks to understand the relationship between the heavy metals and the level of concentration with respect to distance and direction as well as the ecological risk it poses. The monitoring and assessment of soil pollution have over the years become a very important area of study due to the significant threat it poses to the food web. A total of 33 soil samples were collected in the Northern, Eastern and Western axis within a radius of 4km of Dangote cement factory at a depth of 0-15cm using a stainless steel auger. The contamination factor indices for Cr and Cu show moderate pollution across all the samples collected from different axis at a different distance from the factory. Zn also pose a moderate pollution across the samples except for WK4 and NK4 where it is in a low level of contamination. The geo-accumulation indices for Pb and Cr show unpolluted to moderately polluted across all samples at different locations expect for sample location EK4. The results of the ecological risk assessment revealed that Cd poses the highest ecological risk of all the five heavy metals investigated.


2015 ◽  
Vol 9 (1) ◽  
pp. 14-18 ◽  
Author(s):  
L. Musoke ◽  
N. Banadda ◽  
C. Sempala ◽  
J. Kigozi

Cooking food in polyethylene bags has of late substituted banana leaves in Uganda. However, such a practice is risky as chemical contaminants may migrate from polyethylene bags into food during cooking causing health complications. Therefore, this study was done to identify and quantify the levels of chemical contaminants (heavy metals) in black and green polyethylene bags. Polyethylene bags were ashed and digested with acid and heavy metal concentrations determined using an AAS. Samples analyzed contained heavy metals with concentrations ranging between; 1125 - 1725, 76 - 112, 35 - 52, 18 - 31 ppm for Pb, Cd, Cr and Co respectively. Heavy metal migration studies into posho cooked in the black polyethylene bags was done at 65°C (T), 80°C (T) and 95°C (T). The highest migrated heavy metal concentrations 120.60, 12.25, 9.45 and 15.42 ppm for Pb, Cd, Cr and Co respectively were obtained at T3 at the surface of the posho cube (0.5cm) after 5 hours of heating. While the lowest values for Pb (10.60 ppm), Cd (1.26 ppm), Cr (0.20 ppm) and Co (1.55 ppm) were obtained at T1 towards the centroid of the posho cube (1.5 cm) after 2 hours of heating. Pb migrated highest followed by Co, Cr and Cd. Though small quantities migrated, over a long period of time they may accumulate in the body and cause health complications to the victims. To make this research of substantial importance to the polyethylene bag user, the findings were disseminated through media to the general public.


Author(s):  
Godfrida Any Yusriana Dewi ◽  
Steven A Samson ◽  
Usman Usman

Human activities around the estuary of the Manggar river in Balikpapan produce waste disposal and cause heavy metal contamination such as lead (Pb) and cadmium (Cd) in water bodies. The contaminant can endanger the life of aquatic organisms. It can also occurs heavy metal bioaccumulation in the body of the aquatic organisms. The results show that the heavy metal content of Pb and Cd in water, sediment and water biota indicated that the estuary of the Manggar River was contaminated by heavy metals. The content of Pb and Cd in water is 0.276 mg/l and 0.020 mg/l, in sediments is 24.7 mg/kg and 4.52 mg/kg, and in the biota is 4.20 mg/kg and 0.80 mg/kg. This means that fish and shells taken from the waters around the estuary of the Manggar River are not safe for consumption because they can interfere the human health.


Author(s):  
Bogdan GEORGESCU ◽  
Daniel MIERLITA ◽  
Danut STRUTI ◽  
Hermina KISS ◽  
Anca BOUARU

Cadmium (Cd) exposure in fish is the result of aquatic pollution with heavy metals, which is mainly caused byanthropic interventions. Rarely, Cd mobilization from natural resources takes place. Bioaccumulation in tissues and organs is a property of this heavy metal, to generate various pathological effects and major risks due to bio-propagation within the human food chain. Wehereby reviewed the main circumstances and levels of exposure to Cd in the aquatic environment, and effects on growth, development and reproduction induced by its bioaccumulation in fish, as well as the possible ramifications for food security in humans. 


Sign in / Sign up

Export Citation Format

Share Document