scholarly journals Investigation of amine based carbon-dioxide and hydrogen-sulphide separation technologies for biogases

2021 ◽  
Vol 11 (1) ◽  
pp. 115-122
Author(s):  
Zsuzsanna Szolyák ◽  
István Szunyog

Biogas has been used since the beginning of the 19th century, which is a gaseous material formed during the anaerobic fermentation of organic substance. It is extremely versatile in its use, it is mostly used to produce heat and electricity, but it can also be used as a motor fuel. To produce these gases we can use organic materials and wastes from agriculture, food industry and communal sector. When the produced biogas is utilized, less CO2 is released into the environment than with other primary energy sources, it has zero emissions for the whole “carbon cycle” and can therefore be considered positive. The calorific value of biogas is much lower than in the case of natural gas, however, we can increase the energy content by compression and decarbonisation, which can even produce a biomethane which can be equivalent to natural gas. Depending on the feedstock, the methane content of the biogas can change over a very wide range, and the gas mixture can also contain other gases and water vapor. Thus, in order to improve these parameters, undesirable components must be removed from the gas. Several methods can be used to remove unwanted components of the biogas, however, this study focuses exclusively on amino purification technology.

Author(s):  
Raffaela Calabria ◽  
Fabio Chiariello ◽  
Patrizio Massoli ◽  
Fabrizio Reale

In recent years an increasing interest is focused on the study of micro gas turbines (MGT) behavior at part load by varying fuel, in order to determine their versatility. The interest in using MGT is related to the possibility of feeding with a wide range of fuels and to realize efficient cogenerative cycles by recovering heat from exhaust gases at higher temperatures. In this context, the studies on micro gas turbines are focused on the analysis of the machine versatility and flexibility, when operating conditions and fuels are significantly varied. In line of principle, in case of gaseous fuels with similar Wobbe Index no modifications to the combustion chamber should be required. The adoption of fuels whose properties differ greatly from those of design can require relevant modifications of the combustor, besides the proper adaptation of the feeding system. Thus, at low loads or low calorific value fuels, the combustor becomes a critical component of the entire MGT, as regards stability and emissions of the combustion process. Focus of the paper is a 3D CFD analysis of the combustor behavior of a Turbec T100P fueled at different loads and fuels. Differences between combustors designed for natural gas and liquid fuels are also highlighted. In case of natural gas, inlet combustor temperature and pressure were taken from experimental data; in case of different fuels, such data were inferred by using a thermodynamic model which takes into account rotating components behavior through operating maps of compressor and turbine. Specific aim of the work is to underline potentialities and critical issues of the combustor under study in case of adoption of fuels far from the design one and to suggest possible solutions.


2021 ◽  
Vol 82 (1) ◽  
pp. 30-36
Author(s):  
Vasil Motalo ◽  
◽  
Bohdan Stadnyk ◽  
Andrij Motalo ◽  
◽  
...  

The article develops and analyzes a method of the comprehensive evaluation of the quality of natural gas as an energy source. The method is based on establishing the calorific value of natural gas as a determinative index of its quality, taking into account all gas properties: both those that positively affect the gas calorific value and its energy content, and those that adversely affect. The generalized definition of natural gas quality as the degree to which the set of the own gas characteristics (component composition and physical properties) meet the requirements concerning energy content, safety, ecology, and other factors is given. The results of experimental researches on natural gas quality according to the developed procedure are also presented.


2021 ◽  
Vol 27 (4) ◽  
pp. 173-182
Author(s):  
Mario Ho Tak Cheung

Biogas can be converted into treated biogas or synthetic natural gas, which can be blended into town gas pipeline network at a designed mixing ratio. Specific gravity and calorific value of biogas are adjusted to satisfy gas safety and quality standard. Carbon dioxide pressure swing adsorption is selected and applied for specific gravity reduction and calorific value enrichment. 95% nitrogen, defined according to the flammability plot, is mixed with biogas for tuning the calorific value at the end of the process end. Gas interchangeability of the gas mixture of treated biogas and town gas was predicted by using maximum combustion potential (MCP) chart and their maximum mixing ratio for safe use was indicated. Gas interchangeability of the gas mixture was tested to confirm the prediction. The South East New Territories Processing Facilities were designed and built according to the above principle, and has been in operation to convert biogas into synthetic natural gas successfully since 2017.


Author(s):  
J. Dolacis ◽  
E. Tomsons ◽  
J. Hrols

A part of Latvia’s forest resources, namely, branches, stumps, small stump top ends, firewood, slabs, sawdust, etc. remains unutilised both in the felling sites and woodworking plants. All this can be successfully utilised for production of heat energy, thereby replacing a part of the imported natural gas, coal and liquid fuel. To assess the utilisation of a definite type of primary energy, not only its accessibility and costs, but also calorific value should be known. The rational utilisation of energy resources in Latvia is urgent, since less than 30% from the consumption is obtained in this country. Thus, in 2000, the Latvia’s energy balance showed the total consumption of different types of primary energy resources to be 159 145 TJ (T = 1012). Utilising firewood, woodworking waste and chips, 34 250 TJ of energy was produced, or 21.5 % from the total primary energy consumed in Latvia. In the present study, fuel wood is compared with other types of fuel. If the equivalent value of one ton of coal (tce) is 29.308 MJ/kg, then the calorific value of natural gas and dry wood is 1.507 and 0.644, respectively. If 18.883 MJ of heat is obtained from 1 kg of oven dry wood, then 1.3 kg of wood with the relative moisture (Wr) content 20% and about 2.0 kg of freshly cut wood are necessary. To replace 1 ton of sawdust pellets or granules, 2.44 steres of birch firewood with the moisture content Wr = 20% or 2.63 steres with Wr = 40% are necessary. The above-mentioned amount of pellets or granules can be replaced by 3.47 steres of spruce firewood with Wr = 20% or 3.76 steres with Wr = 40%. The production of 1 kWh of heat from natural gas yields 0.224 kg of carbon dioxide, but in the case of fully combusted wood, from 0.35 to 0.4 kg of carbon dioxide.


2019 ◽  
Vol 9 (4) ◽  
pp. 193-198
Author(s):  
Lyudmila S. Timofeeva ◽  
Albina R. Akhmetova ◽  
Liliya R. Galimzyanova ◽  
Roman R. Nizaev ◽  
Svetlana E. Nikitina

Abstract The article studies the existence experience of historical cities as centers of tourism development as in the case of Elabuga. The city of Elabuga is among the historical cities of Russia. The major role in the development of the city as a tourist center is played by the Elabuga State Historical-Architectural and Art Museum-Reserve. The object of the research in the article is Elabuga as a medium-size historical city. The subject of the research is the activity of the museum-reserve which contributes to the preservation and development of the historical look of Elabuga and increases its attractiveness to tourists. The tourism attractiveness of Elabuga is obtained primarily through the presence of the perfectly preserved historical center of the city with the blocks of integral buildings of the 19th century. The Elabuga State Historical-Architectural and Art Museum-Reserve, which emerged in 1989, is currently an object of historical and cultural heritage of federal importance. Museum-reserves with their significant territories and rich historical, cultural and natural heritage have unique resources for the implementation of large partnership projects. Such projects are not only aimed at attracting a wide range of tourists, but also stimulate interest in the reserve from the business elite, municipal and regional authorities. The most famous example is the Spasskaya Fair which revived in 2008 in Elabuga. It was held in the city since the second half of the 19th century, and was widely known throughout Russia. The process of the revival and successful development of the fair can be viewed as the creation of a special tourist event contributing to the formation of new and currently important tourism products.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Made Dirgantara ◽  
Karelius Karelius ◽  
Marselin Devi Ariyanti, Sry Ayu K. Tamba

Abstrak – Biomassa merupakan salah satu energi terbarukan yang sangat mudah ditemui, ramah lingkungan dan cukup ekonomis. Keberadaan biomassa dapat dimaanfaatkan sebagai pengganti bahan bakar fosil, baik itu minyak bumi, gas alam maupun batu bara. Analisi diperlukan sebagai dasar biomassa sebagai energi seperti proksimat dan kalor. Analisis terpenting untuk menilai biomassa sebagai bahan bakar adalah nilai kalori atau higher heating value (HHV). HHV secara eksperimen diukur menggunakan bomb calorimeter, namun pengukuran ini kurang efektif, karena memerlukan waktu serta biaya yang tinggi. Penelitian mengenai prediksi HHV berdasarkan analisis proksimat telah dilakukan sehingga dapat mempermudah dan menghemat biaya yang diperlukan peneliti. Dalam makalah ini dibahas evaluasi persamaan untuk memprediksi HHV berdasarkan analisis proksimat pada biomassa berdasarkan data dari penelitian sebelumnya. Prediksi nilai HHV menggunakan lima persamaan yang dievaluasi dengan 25 data proksimat biomassa dari penelitian sebelumnya, kemudian dibandingkan berdasarkan nilai error untuk mendapatkan prediksi terbaik. Hasil analisis menunjukan, persamaan A terbaik di 7 biomassa, B di 6 biomassa, C di 6 biomassa, D di 5 biomassa dan E di 1 biomassa.Kata kunci: bahan bakar, biomassa, higher heating value, nilai error, proksimat  Abstract – Biomass is a renewable energy that is very easy to find, environmentally friendly, and quite economical. The existence of biomass can be used as a substitute for fossil fuels, both oil, natural gas, and coal. Analyzes are needed as a basis for biomass as energy such as proximate and heat. The most critical analysis to assess biomass as fuel is the calorific value or higher heating value (HHV). HHV is experimentally measured using a bomb calorimeter, but this measurement is less effective because it requires time and high costs. Research on the prediction of HHV based on proximate analysis has been carried out so that it can simplify and save costs needed by researchers. In this paper, the evaluation of equations is discussed to predict HHV based on proximate analysis on biomass-based on data from previous studies. HHV prediction values using five equations were evaluated with 25 proximate biomass data from previous studies, then compared based on error value to get the best predictions. The analysis shows that Equation A predicts best in 7 biomass, B in 6 biomass, C in 6 biomass, D in 5 biomass, and E in 1 biomass. Key words: fuel, biomass, higher heating value, error value, proximate 


2020 ◽  
Vol 21 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Chandrasai Potla Durthi ◽  
Madhuri Pola ◽  
Satish Babu Rajulapati ◽  
Anand Kishore Kola

Aim & objective: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF). Overview: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase. Conclusion: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.


2020 ◽  
Vol 15 (1) ◽  
pp. 787-796 ◽  
Author(s):  
Marek Kieliszek ◽  
Kamil Piwowarek ◽  
Anna M. Kot ◽  
Katarzyna Pobiega

AbstractCellular biomass of microorganisms can be effectively used in the treatment of waste from various branches of the agro-food industry. Urbanization processes and economic development, which have been intensifying in recent decades, lead to the degradation of the natural environment. In the first half of the 20th century, problems related to waste management were not as serious and challenging as they are today. The present situation forces the use of modern technologies and the creation of innovative solutions for environmental protection. Waste of industrial origin are difficult to recycle and require a high financial outlay, while the organic waste of animal and plant origins, such as potato wastewater, whey, lignin, and cellulose, is dominant. In this article, we describe the possibilities of using microorganisms for the utilization of various waste products. A solution to reduce the costs of waste disposal is the use of yeast biomass. Management of waste products using yeast biomass has made it possible to generate new metabolites, such as β-glucans, vitamins, carotenoids, and enzymes, which have a wide range of industrial applications. Exploration and discovery of new areas of applications of yeast, fungal, and bacteria cells can lead to an increase in their effective use in many fields of biotechnology.


Sign in / Sign up

Export Citation Format

Share Document