scholarly journals Pellets based on biofuels

Paliva ◽  
2020 ◽  
pp. 181-188
Author(s):  
Petr Buryan

Laboratory analyzes showed that the wood chips had a higher bulk density and a significantly lower ash content than wood pellets produced by the company technological process company Pelletia-cz. using an annular granulator with a pellet outlet temperature of 80-90 ° C. The water content and calorific value of the wood chips were slightly lower than that of the wood pellets. The content of volatile combustibles and the elemental composition of the two compared energy raw materials did not differ significantly. On the contrary, significant differences were found in herbal pellets (from winter wheat straw, winter rye straw and from whole triticale) produced by the identical process. It was shown that both the plant material and the addition of 3 wt. clay flours (binders) affect their parameters. For example, the proportion of fine material by the addition of a binder was significantly reduced in rye (to 0.17% by weight) and triticale pellets (to 0.04% by weight). On the other hand, the disadvantage of adding clay flour as a binder additive is the increase in the ash content, which reduces the calorific value of the pellets. The heat of combustion of pellets made of wood materials was about 2.5 MJ / kg higher than that of herbal pellets. Combustion of pellets from the three types of herbs monitored produces more emissions of chlorine and nitrogen oxides contaminants than wood samples relative to wood samples. The chlorine content in ashes from herbal pellets compared to ashes from wood materials was about 50 times higher. The nitrogen content in the compared raw materials was about 5–15 times higher for herbs.

Author(s):  
Magdalena DĄBROWSKA ◽  
Milena JAWOREK ◽  
Adam ŚWIĘTOCHOWSKI ◽  
Aleksander LISOWSKI

Wastes from forest and agricultural industry are still insufficiently used. One of the ways of their preprocessing is a pyrolysis process. Therefore, the aim of this study was to determine the energetic properties of biochar made of walnut shells, forest wood chips and willow chips. The studies were performed according to standards. The moisture contents of the material, the ash contents, the net and gross calorific values were determined. Low moisture and ash content were found in each of the biochar species. For all tested samples the ash contents were lower than 6% and for forest wood chips it was 1.5% only. The way of processing the biomass in the pyrolysis process significantly increased the calorific value of the raw materials. It was found that the net calorific values of the tested materials were high and reached the amount of 26.58 MJ‧kg-1 for biochar made of walnut shells, 22.29 MJ‧kg-1 for biochar made of forest wood chips and 24.59 MJ‧kg-1 for biochar made of willow chips. Due to the good physical properties of biochar produced from waste and biological materials, it was found that these solid fuels can be used for energy purposes.


2019 ◽  
Vol 13 (2) ◽  
pp. 170
Author(s):  
Anindya Husnul Hasna ◽  
J. P. Gentur Sutapa ◽  
Denny Irawati

Limbah industri kayu sengon menjadi salah satu bahan baku dalam pembuatan pelet kayu karena potensinya yang cukup besar. Akan tetapi pelet kayu sengon memiliki kerapatan serta nilai kalor yang rendah. Untuk meningkatkan sifat bahan bakar pelet kayu Sengon maka dilakukan pencampuran bahan dengan serbuk tempurung kelapa. Penelitian ini menggunakan bahan dari limbah serbuk gergaji sengon (Falcataria moluccana (Miq.)) dan limbah tempurung kelapa (Cocos nucifera). Masing-masing bahan dibuat partikel pada 3 kelompok ukuran yaitu 20-40 mesh, 40-60 mesh, dan 60-80 mesh. Ke dalam serbuk kayu sengon ditambahkan serbuk tempurung kelapa dengan penambahan 25%, 50%, dan 75%, sedangkan untuk kontrol (0%) adalah pelet kayu sengon tanpa penambahan tempurung kelapa. Pelet dibuat dengan menggunakan single-pelletizer pada suhu ruang dengan tekanan 100 kg/cm2. Hasil penelitian menunjukkan kombinasi bahan baku yang berbeda (sengon dan tempurung kelapa) memberikan pengaruh terhadap sifat fisika dan kimia pelet kayu. Semakin tinggi persentase campuran serbuk tempurung kelapa pada pelet kayu sengon maka semakin tinggi keteguhan tekan, karbon terikat, total karbon dan nilai kalor, sedangkan untuk kadar zat mudah menguap, kadar abu, kadar N, S, dan H semakin rendah. Pelet terbaik dihasilkan pada kombinasi penambahan tempurung kelapa 50% dengan ukuran 60-80 mesh yang memiliki sifat kadar abu yang rendah (0,79%) dan nilai kalor yang tinggi (5129,07 Kal/g), serta keteguhan tekan yang masih cukup tinggi (444,75N). Hasil tersebut memenuhi standar SNI 8021:2014.Effect of Particle Size and Addition of Coconut Cell on the Quality of Sengon Wood PelletAbstractThe waste of sengon (Falcataria moluccana) industry becomes one of the raw materials in the manufactured of wood pellets, because of its potency. However F. moluccana pellets posses low density and calorific value. To improve its properties, a materials mixing with coconut shell parcticles was conducted. This study used material from the waste of sengon (F. moluccana) sawdust and the waste of coconut (Cocos nucifera). Particles from those materials were made on 3 sizes which are 20-40 mesh, 40-60 mesh, and 60-80 mesh. 25%, 50%, and 75% of coconut shell were added into sengon sawdust, while woode pellets with no additions were used as a control. Pellets are made using single-pelletizer at room temperature with a pressure of 100 kg/cm2. The research results showed if the different material combination (sengon and coconut shell) gave significant effect to physical properties and chemical content of wood pellets. Higher percentage of coconut shell gives higher compressive strength, fixed carbon content, total of carbon, and calorific value, while volatile matter, ash content, N, S, and H content showed lower value. The best pellet was resulted from combination between coconut shell addition 50% and nesh size 60 – 80 which posses quite low ash content (0.79%) and high calorific value (5129.07 Kal/g), and high compression strength (444.75 N). This result has qualified the standard of SNI 8021:2014.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3789
Author(s):  
Dinko Vusić ◽  
Filip Vujanić ◽  
Karlo Pešić ◽  
Branimir Šafran ◽  
Vanja Jurišić ◽  
...  

The research was conducted with the goal to determine the variability of the quality parameters of the wood chips produced from the most favorable raw material (energy roundwood), and in the most controllable operational conditions (pellet factory), as the first step in identifying opportunities to optimize the wood chips’ quality monitoring. Four raw material types were tested: fir/spruce and beech debarked energy roundwood, as well as energy wood with bark of the same species. Sampling was conducted during six consecutive months along with laboratory testing, all according to the HRN EN ISO standards for solid biofuels. Interpretation of the results was done in relation to deviation from the first sampling results (as an indicator of the possibility to retain the quality of wood chips), and repeatability and reproducibility set in the standards (as an indicator of acceptable variability). The influence of the species and debarking process on the wood chips’ quality was analyzed as well. Relative deviation from the first sampling as well as the quality class change pointed moisture content as a normative property with the lowest possibility to retain initial values over the six-month period. Ash content results indicated a strong possibility to maintain the initial ash content class in the majority of the samples. In just three cases, the results of ash content were outside the reproducibility limits with first sampling as a reference. Gross calorific value results pointed only four samples outside the reproducibility limits with the first sampling results are set as a reference. Wood species influenced gross calorific value and the median value of the particle size distribution and debarking showed a significant positive effect on the moisture content reduction as well as on the ash content reduction. Presented findings are indicative for the investigated raw materials, however for the general conclusion on the subject of wood chips normative properties variation, various raw material types will have to be examined in further research.


2018 ◽  
Vol 168 ◽  
pp. 08004
Author(s):  
Václav Peer ◽  
Jaroslav Frantík ◽  
Jan Kielar ◽  
Drahomír Mašek

Slow pyrolysis of solid materials can produce new materials usable for energy or chemical industry. The advantage of pyrolysis devices is the simple construction and process control and the ability to utilize materials with different properties (composition, ash content). Produced gaseous, liquid and solid materials could be used as a sources of energy, raw materials in chemical industry or substances for improving of soil properties. At article are described products of slow pyrolysis of biomass (wood chips), agrifuels (hay, wheat straw) and sewage sludge.


2021 ◽  
Vol 38 ◽  
pp. 00105
Author(s):  
Valentina A. Sagaradze ◽  
Elena Y. Babaeva ◽  
Yulia V. Zagurskaya ◽  
Tatyana I. Siromlya

The leaves of C. sanguinea Pall. have the potential to accumulate dust on the surface. As the fine dust particles contain various chemical elements (ChEs), we studied the ChE composition in the leaves with different degrees of dust contamination to assess the impact on assay results. The samples of C. sanguinea leaves collected in the Kemerovo region (Russia) were divided into two groups based on the visual condition of plant material: clean leaves and dust contaminated leaves. The total ash assay revealed higher ash content, exceeding pharmacopoeial standards in the dust contaminated group. Dust contaminated leaf samples demonstrated significantly higher concentrations of many ChE: Si, Fe, Al, Na, Ti, Ni, Zr, Cr, V, Pb, La, Ga, Y, Sc and Yb comparing to non-contaminated plant material. The values of potentially hazardous ChEs were significantly lower than the maximum levels specified for medicinal raw materials in all studied samples.


Author(s):  
A. V. Grytsenko ◽  
N. V. Vnykova ◽  
O. I. Pozdnyakova

Thermal power plants remain one of the main sources of environmental pollution. The deterioration of the quality of traditional carbon-containing energy resources leads to the need to develop technologies for co-combustion of biofuel and coal at small and large power plants. The paper proposes the concept of using solid waste from tire recycling by adding to the composition of the mixed fuel “coal – wood waste” as a substitute for coal slag, which is formed during the utilization of worn-out tires by pyrolysis. The aim of the work was to determine the possibility of increasing the calorific value of wood pellets by co-firing with pyrolysis slag instead of coal without increasing the burden on the environment. At the same time, the following tasks have been set: to determine the lowest combustion heat of mixed fuels and assess its change when replacing coal with slag; to determine moisture content, total sulfur content, volatile matter yield, ash content of mixed fuels according to standard methods; to assess the change in these parameters when replacing coal with slag at the same component ratios; to determine the optimal ratios of components in mixed fuels, which will not increase the burden on the environment when replacing coal with pyrolysis slag. It has been determined that replacing coal with slag results in an increase in calorific value by 37–45 %, a decrease in ash content by 37–42 %, and an increase in the yield of volatile substances. At the same time, the sulfur content increases by 5.6–18 %. The use of traditional cleaning equipment is recommended in order to reduce the emission of sulfur dioxide. The research results make it possible to substantiate the possibility of replacing coal with slag in mixed fuels at certain ratios of components. A new direction of using solid products from recycling of rubber products, i.e. worn-out tires, has been proposed by the pyrolysis method in mixed fuels “slag-wood pellets” for small and medium-sized power plants.


Author(s):  
Edgars Cubars ◽  
Liena Poiša

There is a growing interest about the possibility of exploiting the local biomass as an energy source. The main resource for biofuel production in Latvia is wood. Water plants, like common reed, growing in nearly all of the water reservoirs in Latvia, and all cultivate plants and residues of cereal crops, also can be good alternative for solid bio fuels production. The aim of this paper is to analyze possibilities to make composite fuels from these recourses. The study reveals research of ash content and highest burning heat value in different composite biomass fuels. It contains analysis of samples obtained from various local Latvian biomass types, i.e. reed, wood, flax spray, hay, hemp and peat, by combining them in different proportions. The study contains optimal combining proportions of different biomass types for composite fuel production basing on the ash content and burning heat in them. The results of the study show that the value of wood highest burning heat is higher than another biomass types like reed, peat, hay, hemp and flax spray. It means that combining of different biomass types with wood, will reduce the calorific value of composite biomass. Also, wood is a fuel with a low ash content, and admixture of various biomass types available in Latvia, as well as admixture of coal dust to the wood in composite duels, increases ash content in the respective fuels. In order to increase the burning heat and decrease ash content value to the optimal level and to diversify raw materials necessary for biomass fuel generating process, the authors analyze possibilities of using composite fuels by combining wood and coal dust.


2021 ◽  
Vol 914 (1) ◽  
pp. 012069
Author(s):  
S Wibowo ◽  
K Arief ◽  
T K Waluyo

Abstract Wood pellets are renewable fuels from biomass which can be an alternative substitute for petroleum fuels. One of the raw materials for making wood pellets is sawdust from the sawmill industry or other wood craftsmen. Sawdust waste that dumped for a long time will reduce its moisture content (over-dry) and will be difficult to form into pellets. In this paper, we studied the effect of adding liquid solution ie. water, tapioca starch solution, pure molasses solution and dilute molasses solution on over-dry sawdust to the characteristic properties of wood pellet torrefaction. The sawdust material was collected from the wood sawmill in the Bogor District. There were five treatments i.e sawdust (control), sawdust + 10% water, sawdust + 10% tapioca starch solution, sawdust + 10% pure molasses solution, sawdust + 10% diluted molasses solution. The wood pellet torrefaction properties were investigated using a manual hot press at the temperature of 210°C. The results showed that the addition of pure molasses solution produced better pellets than other treatments, with properties i.e water content of 2.65%, the ash content of 1.45%, volatile matter 76.72%, fixed carbon 19.18%, the calorific value of 19.56 MJkg−1, density 0.84 gcm−3, and compressive strength 52.22 kgcm−2.


REAKTOR ◽  
2019 ◽  
Vol 18 (04) ◽  
pp. 183 ◽  
Author(s):  
Santiyo Wibowo ◽  
Ningseh Lestari

Peanut shells could be regarded as biomass wastes generated from agricultural products, which are abundantly available.  The current handling of those wastes is merely through direct incineration, without a proper and controlled manner. Consequently, it could arouse environmental concerns, such as air pollution and human respiratory diseases.  One alternative solution is converting those peanut shells to bio-pellet, expectedly applicable for fuels.  Relevantly, research on bio-pellet manufacture from peanut shells, previously treated with the torrefaction, was conducted. It’s aimed mainly to identify the fuel-related characteristics of bio-pellet products.  The tested bio-pellet parameters covered, moisture content, ash content, volatile matters, fixed carbon content, calorific values, and density.  The results revealed that torrefaction temperature and time at raw materials (peanut shells) could improve their qualities in regard to particular calorific value compared to those before such torrefaction; which referred to Indonesia’s Standard (SNI-8021-2014) for wood bio-pellet.  Further, torrefaction could increase bio-pellet quality which satisfied the SNI’s Standard, except for ash content.  Optimal torrefaction treatment was obtained at 300oC temperature for 60 minutes, whereby it achieved remarkable bio-pellet characteristics in terms of moisture content (3.092%), ash content (6.116%), volatile matters (38.387%), fixed carbon (55.447%), calorific value (6174 cal/g), and density (0.703 g/cm3). The torrefaction bio-pellets from peanut shells could achieve remarkable performances, with respect to fuel consumption rate (0.68 kg/hr), heating value (6174 kcal/kg), and thermal efficiency (16.67%).


2020 ◽  
Vol 4 (2) ◽  
pp. 126
Author(s):  
Guna Bangun Persada ◽  
Putty Yunesti

Briquettes are an essential product for metal mineral processing plants in Indonesia. One good alternative raw materials for briquettes that do not pollute the environment is the palm kernel shell. This research was conducted by making briquettes from palm kernel shells to find optimal variations in carbonization temperature, material mixture, and adhesive mixture. The research was conducted on a laboratory scale. The palm kernel shell and coal kernel were carbonized at various temperatures, namely 450°C, 550°C, and 650°C, then crushed and sieved to 35 mesh. The powdered palm kernel shell and coal that have become powdered charcoal are weighted based on a mixture of powder and the adhesive composition ratio of 40 g. After that, the briquettes were formed under a pressure of 100 kg/cm² on a cylindrical mold with 40 mm. The analyzes carried out were moisture content, ash content, volatile substances content, fixed carbon content, calorific value, compressive strength, density, porosity, and SEM (Scanning Electron Microscope). The results showed that the briquette from the kernel of the palm kernel shell was optimal at a temperature of 550 ° C with a starch adhesive mixture of 7.5%, a pressure of 100 kg/cm², moisture content of 5.34%, an ash content of 5.81%, a substance content. Volatile amounted to 18.77%, 71.08% for fixed carbon, heating value 7125.86 cal/g. Density of 0.78, porosity of 0.04 and strength of 72.56 kg / cm².


Sign in / Sign up

Export Citation Format

Share Document