scholarly journals A mathematical model of relation and origin of variation between CRI and CSR indexes

Paliva ◽  
2021 ◽  
pp. 70-85
Author(s):  
Danil Alekseev ◽  
Andrey Smirnov ◽  
Konstantin Chalyy

The aim of this work is both the mathematical relation and the value variation analysis between CRI and CSR indexes. For this aim the physical mathematical model is proposed on the basis of the ISO-test. The physical basis of the model is a material balance of a one piece of coke from the ISO sample. Results of calculating by the model are curves of CSR=f(CRI) which reproduces the regressions in analogy with CSR=a+b.CRI for most coke-producing countries. The model showed that a larger part of CSR=f(CRI) curve is linear and that a universal regression in analogy with CSR=a+b.CRI does not exist. As follows from the model, every piece of coke from the ISO sample has its own CSR=f(CRI) curve with a CRI and CSR point. Between pieces of coke, variations of CRI and CSR values can be explained by the open pore amount, the coke pores’ surface area, the statistical distribution of molecular oriented domains on the basis of Lc and the coke piece mass. In our results, pores with a geometrical orientation from the outside to the center of a coke piece and having a minimum length significantly influence on the coke quality according to CRI and CSR indexes.

2021 ◽  
Author(s):  
Steven F Mullen

Abstract STUDY QUESTION What factors associated with embryo culture techniques contribute to the rate of medium osmolality change over time in an embryo culture incubator without added humidity? SUMMARY ANSWER The surface area-to-volume ratio of culture medium (surface area of the medium exposed to an oil overlay), as well as the density and height of the overlaying oil, all interact in a quantitative way to affect the osmolality rise over time. WHAT IS KNOWN ALREADY Factors such as medium volume, different oil types, and associated properties, individually, can affect osmolality change during non-humidified incubation. STUDY DESIGN, SIZE, DURATION Several experimental designs were used, including simple single-factor completely randomized designs, as well as a multi-factor response surface design. Randomization was performed at one or more levels for each experiment. Osmolality measurements were performed over 7 days, with up to 8 independent osmolality measurements performed per treatment group over that time. For the multi-factor study, 107 independent combinations of factor levels were assessed to develop the mathematical model. PARTICIPANTS/MATERIALS, SETTING, METHODS This study was conducted in a research laboratory setting. Commercially available embryo culture medium and oil was used. A MINC incubator without water for humidification was used for the incubation. Osmolality was measured with a vapor pressure osmometer after calibration. Viscometry and density were conducted using a rheometer, and volumetric flasks with an analytical balance, respectively. Data analyses were conducted with several commercially available software programs. MAIN RESULTS AND THE ROLE OF CHANCE Preliminary experiments showed that the surface area-to-volume ratio of the culture medium, oil density, and oil thickness above the medium all contributed significantly (P < 0.05) to the rise in osmolality. A multi-factor experiment showed that a combination of these variables, in the form of a truncated cubic polynomial, was able to predict the rise in osmolality, with these three variables interacting in the model (P < 0.05). Repeatability, as measured by the response of identical treatments performed independently, was high, with osmolality values being ± 2 of the average in most instances. In the final mathematical model, the terms of the equation were significant predictors of the outcome, with all P-values being significant, and only one P-value > 0.0001. LIMITATIONS, REASONS FOR CAUTION Although the range of values for the variables were selected to encompass values that are expected to be encountered in usual embryo culture conditions, variables outside of the range used may not result in accurate model predictions. Although the use of a single incubator type and medium type is not expected to affect the conclusions, that remains an uncertainty. WIDER IMPLICATIONS OF THE FINDINGS Using this predictive model will help to determine if one should be cautious in using a specific system and will provide guidance on how a system may be modified to provide improved stability during embryo culture. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Cook Medical. The author is a Team Lead and Senior Scientist at Cook Medical. The author has no other conflicts of interest to declare TRIAL REGISTRATION NUMBER N/A.


2019 ◽  
Vol 2019 (3) ◽  
pp. 249-255
Author(s):  
N Usmonov ◽  
◽  
Sh Sanayev ◽  
Z Yusupov

The article describes the developed mathematical model, algorithm and program for calculating the process of cooling the water leaving the evaporative cooler and the final temperature of humid air. The compilation of a mathematical model is based on the analysis of literature data. Practically at all industrial enterprises, technological equipment is cooled by means of circulating water supply systems equipped with evaporative coolers. The article made a choice of a cooling system for air conditioning systems of residential premises. The developed basic design scheme of the evaporative water and air cooler with the irrigated layer is presented, as well as the estimated thermal and material balance. One of the main elements of these devices is a heat-mass transfer nozzle - sprinkler. This article presents the results of mathematical modeling of processes occurring in the volume of the sprinkler evaporator chamber, Raschig rings composed of vertical polymeric materials. Expressions are obtained for determining the values of air temperature based on the calculation of thermal modeling of the process of cooling circulating water in evaporative coolers of the type in question.


Author(s):  
Mbelle Samuel Bisong ◽  
Paune Felix ◽  
Lokoue D. Romaric Brandon ◽  
Pierre Kisito Talla

Nowadays, vehicles are being abandoned by their users due to their high fuel consumption which had not been studied by the user from the start. Thus, the need to study the fuel consumption of vehicles due to one of the factors which greatly affects it; drag force, so as to produce information which vehicle users can have before purchasing their vehicles. With regards to this, this work is focused on the development of a computer program able to evaluate the fuel consumption of light vehicles. To achieve this, the basic equations of consumption are used to arrive at a mathematical relation between drag force and fuel consumption. This mathematical model is further implemented on the analytical software Matlab in order to produce the various consumption curves of the vehicles case study. A simulator which takes into consideration a vehicle’s engine data in order to produce specific consumption curves and provide valid information on the fuel consumption of the vehicle is developed from this mathematical model. It can be used in automotive construction companies and also by any individual.


Paleobiology ◽  
1989 ◽  
Vol 15 (3) ◽  
pp. 283-298 ◽  
Author(s):  
Kevin McCartney ◽  
David E. Loper

Several groups of siliceous microorganisms possess a skeletal latticework of interconnected rods. Skeletal configurations of one of these groups, the silicoflagellates, can be produced by a simple mathematical model that minimizes the apical surface area for a given basal area and internal volume. A similar model that minimizes the total length of the skeletal elements, and thus the silica utilization and skeletal weight, produces configurations that are generally less common in silicoflagellates. The diversity of silicoflagellate skeletal morphologies suggests that both the minimization of apical surface area and the conservation of skeletal material may be important factors in skeletal design. The two most important morphologies found in modern oceans, the four-sidedDictyochaand the six-sidedDistephanus, can co-occur in an environment where both factors have some relative importance. However, these models do not explain the range of silicoflagellate skeletal morphology found in nature.


Author(s):  
Sergey Lupuleac ◽  
Nadezhda Zaitseva ◽  
Maria Stefanova ◽  
Sergey Berezin ◽  
Julia Shinder ◽  
...  

An approach for simulating the assembly process where compliant airframe parts are being joined by riveting is presented. The foundation of this approach is the mathematical model based on the reduction of the corresponding contact problem to a Quadratic Programming (QP) problem. The use of efficient QP algorithms enables mass contact problem solving on refined grids, which is needed for variation analysis and simulation as well as for the consequent assembly process optimization. To perform variation simulation, the initial gap between the parts is assumed to be stochastic and a cloud of such gaps is generated based on statistical analysis of the available measurements. The developed approach is illustrated with two examples, simulation of A350-900 wing-to-fuselage joining and optimization of A320 wing box assembly. New contact quality measures are discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
José Sérgio Domingues ◽  
Marcos de Paula Vale ◽  
Carlos Barreira Martinez

The main aim of this study was the formula application of the superficial area of a truncated prolate spheroid (TPS) in Cartesian coordinates in obtaining a cardiac parameter that is not so much discussed in literature, related to the left ventricle (LV) surface area of the human heart, by age and sex. First we obtain a formula for the area of a TPS. Then a simple mathematical model of association of the axes measures of a TPS with the axes of the LV is built. Finally real values of the average dimensions of the humans LV are used to measure surface areas approximations of this heart chamber. As a result, the average superficial area of LV for normal patients is obtained and it is observed that the percentage differences of areas between men and women and their consecutive age groups are constant. A strong linear correlation between the obtained areas and the ventricular volumes normalized by the body areas was observed. The obtained results indicate that the superficial area of the LV, besides enabling a greater knowledge of the geometrical characteristics of the human LV, may be used as one of the normality cardiac verification criteria and be useful for medical and biological applications.


2011 ◽  
Vol 312-315 ◽  
pp. 1198-1203 ◽  
Author(s):  
A.N. Dmitriev ◽  
Yu.A. Chesnokov ◽  
G.Yu. Arzhadeeva ◽  
Yu.P. Lazebnaya

The iron ore raw materials and coke quality is the basic reserve of improvement of blast furnace technology. Some of the quality indicators of iron ore raw materials and coke and their influence on the main parameters of the blast furnace smelting are considered in this paper.


2016 ◽  
Vol 6 (3) ◽  
pp. 54-59
Author(s):  
Trong Hung Nguyen ◽  
Ba Thuan Le

The report “Brandon mathematical model describing the effect of calcination and reduction parameters on specific surface area of UO2 powders” [14] has built up a mathematical model describing the effect of the fabrication parameters on SSA (Specific Surface Area) of ex-AUC (Ammonium Uranyl Carbonate) UO2 powders. In the paper, the Brandon mathematical model that describe the relationship between the essential fabrication parameters [reduction temperature (TR), calcination temperature (TC), calcination time (tC) and reduction time (tR)] and SSA of the obtained ex-ADU (Ammonium Di-Uranate) UO2 powder product has established. The proposed model was tested with Wilcoxon’s rank sum test, showing a good agreement with the experimental parameters. The proposed model can be used to predict and control the SSA of ex-ADU UO2 powders


2021 ◽  
Vol 5 (4) ◽  
pp. 135-139
Author(s):  
Alexander Serhieiev ◽  
Andriy Krivoshapka ◽  
Oleksandr Isakov ◽  
Vyacheslav Lysenko ◽  
Viktor Moskalenko ◽  
...  

The subject matter of the article is the towing and pulling of wheeled and tracked vehicles with the use of cable ropes and dynamic slings. The goal of the study is to determine the mathematical and physical basis for the development of a simulator for towing and pulling wheeled and tracked vehicles for researching to study the possibility of using aramid fibers of cable-ropes and dynamic slings. The tasks to be solved are: based on the analysis of the main roads and ground characteristics to formalize the list of calculated parameters and physical quantities determine the amount of evacuation work when pulling, towing and transporting wheeled and tracked vehicles; to develop a mathematical model that describes the process of pulling and towing wheeled and tracked vehicles using cable ropes and dynamic slings. General scientific and special methods of scientific knowledge are used. The following results are obtained. By analyzing the main characteristics of roads and ground, a formalized list of design parameters and physical quantities that determine the volume of evacuation work during the towing and pulling of wheeled and tracked vehicles was obtained. Mathematical model, describes the process of pulling and towing wheeled and tracked machines using cable ropes and dynamic slings have been  compiled as a system of equations with different order. analyzed existing technology for the production of aramid fibers, their strengths and weaknesses, and formed a research polygon with regard to the peculiarities of the operation of wheeled and tracked vehicles. Existing technology for the production of aramid fibers, their strengths and weaknesses, and formed a research polygon with regard to the peculiarities of the operation of wheeled and tracked vehicles have been analyzed. Conclusions. The main roads and ground characteristics  that determine the vehicles. evacuation conditions are the following: the type of road or ground, their possibility depending on the season and precipitation, the presence of ascents and descents, as well as the nature of road (ground) interaction with caterpillars determined by resistance coefficients. movement and traction. The mathematical model of pulling a wheeled and tracked vehicle using cable ropes and dynamic can be presented as a system of equations: the jerk carried out by the machine in time reflected third-order differential equation, assuming that all the energy accumulated by the cable is numerically equal to the work of moving stuck machine, corresponds to the equality of the corresponding integrals; the properties of aramid fibers that affect the strength and performance characteristics of cable ropes can be formally expressed through the elongation of the cable. Analysis of strength and service properties of aramid fibers opens the way to improvement of manufacturing technology of cable ropes and dynamic slings for pulling and towing of wheeled and tracked vehicles.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5633
Author(s):  
Muhammad Saqib ◽  
Ricardo Bernhardt ◽  
Markus Kästner ◽  
Natalia Beshchasna ◽  
Gianaurelio Cuniberti ◽  
...  

Stenting is a widely used treatment procedure for coronary artery disease around the world. Stents have a complex geometry, which makes the characterization of their corrosion difficult due to the absence of a mathematical model to calculate the entire stent surface area (ESSA). Therefore, corrosion experiments with stents are mostly based on qualitative analysis. Additionally, the quantitative analysis of corrosion is conducted with simpler samples made of stent material instead of stents, in most cases. At present, several methods are available to calculate the stent outer surface area (SOSA), whereas no model exists for the calculation of the ESSA. This paper presents a novel mathematical model for the calculation of the ESSA using the SOSA as one of the main parameters. The ESSA of seven magnesium alloy stents (MeKo Laser Material Processing GmbH, Sarstedt, Germany) were calculated using the developed model. The calculated SOSA and ESSA for all stents are 33.34%(±0.26%) and 111.86 mm (±0.85 mm), respectively. The model is validated by micro-computed tomography (micro-CT), with a difference of 12.34% (±0.46%). The value of corrosion rates calculated using the ESSA computed with the developed model will be 12.34% (±0.46%) less than that of using ESSA obtained by micro-CT.


Sign in / Sign up

Export Citation Format

Share Document