scholarly journals Enhancement of Power Quality for 15 Level Inverter using Phase Disposition-PWM Technique

Author(s):  
Richa Gupta

With consideration of use of solar, wind and other renewable energy source for industrial applications like electric vehicle drive, train traction and FACTS integration, which demand voltage levels in the range of kilo volts with high power quality, to achieve this high voltage level and high quality of power, a cascaded H-bridge multilevel inverter based topology capable of operating with low harmonic distortion is proposed in the paper. In order to attain low total harmonic distortion (THD), use of phase disposition-PWM technique is proposed in the paper. Giving due attention to both switch count and low THD, the output voltage levels of the multi-level inverter are set at 15 levels. Due to half wave symmetry the even order harmonics for proposed system become zero and the lower order harmonics reduces which is shown in tabular from. Due to reduced switch count and low THD the overall system become more efficient and effective. The effectiveness of the proposed control strategy has been verified using MATLAB simulations. Simulation is done for both symmetrical as well as asymmetrical multilevel inverter topology. It is observed that quality of the output voltage waveforms of the multi-level inverter (MLI) is as per the IEEE std 519 specifications. For symmetrical reduced switch fifteen level inverter the THD is 4.42% and for asymmetrical topology THD is 4.59% for the output voltage waveform.

Author(s):  
Trong-Thang Nguyen

<p>In this study, the author analyzes the advantages and disadvantages of multi-level inverter compared to the traditional two-level inverter and then chose the suitable inverter. Specifically, the author analyzes and designs the three-level inverter, including the power circuit design and control circuit design. All designs are verified through the numerical simulation on Matlab. The results show that even though the three-level inverter has a low number of switches (only 12 switches), but the quality is very good: the total harmonic distortion is small; the output voltage always follows the reference voltage.</p>


2022 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Madhu Andela ◽  
Ahmmadhussain Shaik ◽  
Saicharan Beemagoni ◽  
Vishal Kurimilla ◽  
Rajagopal Veramalla ◽  
...  

This paper deals with a reduced switch multi-level inverter for the solar photovoltaic system-based 127-level multi-level inverter. The proposed technique uses the minimum number of switches to achieve the maximum steps in staircase AC output voltage when compared to the flying capacitor multi-level inverter, cascaded type multilevel inverter and diode clamped multi-level inverter. The use of a minimum number of switches decreases the cost of the system. To eliminate the switching losses, in this topology a square wave switch is used instead of pulse width modulation. Thereby the total harmonic distortion (THD) and harmonics have been reduced in the pulsating AC output voltage waveform. The performance of 127-level MLI is compared with 15 level, 31-level and 63-level multilevel inverters. The outcomes of the solar photovoltaic system-based 127-level multi-level inverter have been simulated in a MATLAB R2009b environment.


Now a day mostly we produce power from non conventional energy sources and power hassle increases day by day. To diminish this power demand we need to emphasize power infusion methods. Multi-level inverter is accommodating to infuse power from distinct renewable sources like solar, wind-power. It generates the alternating output level of voltage from different DC level sources. This inverter uses ‘m’ H-bridges and several DC sources to obtain (2m+1) level of output voltage. This paper focuses on improvement of quality of desired output voltage waveforms with less number of switching devices.


2012 ◽  
Vol 229-231 ◽  
pp. 2380-2384
Author(s):  
Bing Yi Wang ◽  
Shuang Zhai ◽  
Xiao Qian Zhu

In order to improve the quality of cascade multilevel inverter’s output voltage, this paper introduces an optimization harmonic elimination control technique. The harmonic of cascade multilevel inverter is controlled by the switch angels of inverter units. Through this technique, switch angels eliminate the low and middle frequency harmonic compositions and at the same time make total harmonic distortion rate of cascade multilevel inverter low are found. The correctness and accuracy of optimization harmonic elimination control technique are validated by simulation and experiment model.


Author(s):  
Hatef Firouzkouhi

A new concept in control of cascaded H-Bridge multi-level inverters is proposed in this paper. According to this concept, switching angles are considered to be independent from the fundamental voltage. A polynomial term is presented to show the relation between switching angles and DC voltages. Based on this concept, Total Harmonic Distortion (THD) calculations are updated and proved to be independent from the fundamental voltage. Thus, once calculated for minimum THD, the switching pattern can be used for any required level of output voltage. To examine the effectiveness of the proposed method, it is applied in control of an eleven level inverter. The simulation results are demonstrated and verified through experiments with a setup controlled by Xilinx SPARTAN3 family FPGA (XC3S400-PQG208).


2021 ◽  
Vol 23 (2) ◽  
pp. 131-136
Author(s):  
Aneel Kumar Maheshwari ◽  
Mukhtiar Ahmed Mahar ◽  
Abdul Sattar Larik ◽  
Abdul Hameed Soomro

The paper introduces the cascaded H-Bridge multi-level inverter with single-phase arrangement connected series with full-bridge inverter and CHBMLI configuration integrated with Double level circuit is proposed to reduce the harmonic distortion to get high power quality. In the proposed configuration, a half-bridge inverter has been implemented to increase the output voltage waveform nearly twice as compared with the conventional Cascaded H-Bridge MLI. For high Power quality, the output voltage waveform with the reference of sinusoidal, the phase opposition disposition carrier arrangement has been utilized in PWM for producing gate pulse of switches. The high waveform of output voltage achieved with the less no of switches, less % THD distortion, less conduction and switching losses. The purposed symmetrical model of CHBMLI is successfully verified using MATLAB based on simulation with DLC configuration.


2021 ◽  
Vol 13 (2) ◽  
pp. 505
Author(s):  
Sumaya Jahan ◽  
Shuvra Prokash Biswas ◽  
Md. Kamal Hosain ◽  
Md. Rabiul Islam ◽  
Safa Haq ◽  
...  

The use of different control techniques has become very popular for controlling the performance of grid-connected photovoltaic (PV) systems. Although the proportional-integral (PI) control technique is very popular, there are some difficulties such as less stability, slow dynamic response, low reference tracking capability, and lower output power quality in solar PV applications. In this paper, a robust, fast, and dynamic proportional-integral resonance controller with a harmonic and lead compensator (PIR + HC + LC) is proposed to control the current of a 15-level neutral-point-clamped (NPC) multilevel inverter. The proposed controlled is basically a proportional-integral resonance (PIR) controller with the feedback of a harmonic compensator and a lead compensator. The performance of the proposed controller is analyzed in a MATLAB/Simulink environment. The simulation result represents admirable performance in terms of stability, sudden load change response, fault handling capability, reference tracking capability, and total harmonic distortion (THD) than those of the existing controllers. The responses of the inverter and grid outlets under different conditions are also analyzed. The harmonic compensator decreases the lower order harmonics of grid voltage and current, and the lead compensator provides the phase lead. It is expected that the proposed controller is a dynamic aspirant in the grid-connected PV system.


2021 ◽  
Vol 17 (1) ◽  
pp. 1-13
Author(s):  
Adala Abdali ◽  
Ali Abdulabbas ◽  
Habeeb Nekad

The multilevel inverter is attracting the specialist in medium and high voltage applications, among its types, the cascade H bridge Multi-Level Inverter (MLI), commonly used for high power and high voltage applications. The main advantage of the conventional cascade (MLI) is generated a large number of output voltage levels but it demands a large number of components that produce complexity in the control circuit, and high cost. Along these lines, this paper presents a brief about the non-conventional cascade multilevel topologies that can produce a high number of output voltage levels with the least components. The non-conventional cascade (MLI) in this paper was built to reduce the number of switches, simplify the circuit configuration, uncomplicated control, and minimize the system cost. Besides, it reduces THD and increases efficiency. Two topologies of non-conventional cascade MLI three phase, the Nine level and Seventeen level are presented. The PWM technique is used to control the switches. The simulation results show a better performance for both topologies. THD, the power loss and the efficiency of the two topologies are calculated and drawn to the different values of the Modulation index (ma).


2018 ◽  
Vol 7 (3) ◽  
pp. 1059
Author(s):  
Mustafa Fawzi Mohammed ◽  
Ali Husain Ahmad ◽  
AbdulRahim Thiab Humod

The most concerns in the inverter's design are about, how to make the output voltage of the inverter sinusoidal at the desired fundamental frequency with low total harmonic distortion (THD). This paper presents a design and implementation of single-phase five-level inverter which is powered by single dc source and based on T-type multi-level inverters construction. The proposed inverter is built mainly by six IGBTs and two diodes. The used modulation technique is based on using two triangular carriers at 2000 Hz frequency and shifted by phase opposition disposition (POD) method. The carriers are made slightly unbalanced with their amplitudes. The over-modulation method is also introduced in the design to get the lowest possible THD effect without using filters. The inverter is simulated by MATLAB SIMULINK, implemented practically, and tested with the help of LabVIEW software.  


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1379 ◽  
Author(s):  
Umberto Abronzini ◽  
Ciro Attaianese ◽  
Matilde D’Arpino ◽  
Mauro Di Monaco ◽  
Giuseppe Tomasso

Neutral Point Clamped (NPC) converters with n levels are traditionally controlled in such a way that the DC-link capacitors operate at 1/( n - 1) of the total DC-link voltage level. The voltage level across the DC-link capacitors has to be properly regulated by the capacitor unbalance control to contain the harmonic distortion of the converter output voltages. State-of-the-art modulation techniques address the problem of the DC-link voltage regulation for NPC inverters. However, they highly show reduced performance when unbalanced DC-link voltages are considered. In this paper, a novel Space Vector Modulation (SVM) is proposed for NPC converters with an unbalanced DC-link. At every modulation interval, the technique defines the optimal switching pattern by considering the actual unbalanced DC-link conditions. The proposed modulation allows improving the harmonic content of the NPC converter output voltage with respect to a traditional ML-SVM, when the same operating conditions are considered. As an extension, the proposed modulation technique will guarantee the same output voltage quality of a traditional ML-SVM with unbalanced DC-link, while improving the conversion efficiency thanks to a reduction of switching frequency.


Sign in / Sign up

Export Citation Format

Share Document