scholarly journals New Polyalphabetic Substitution Scheme for Secure Communication

The internet is a very powerful and useful tool for communication, information and connectivity. So it is very important to keep yourself safe and secure online. The best way of secure information is encryption; there are many cryptographic algorithms available for encryption. These cryptographic algorithms are classified according to their encrypting process; as substitution cipher or transposition cipher. In Polyalphabetic ciphers, the substitution rule changes continuously from character to character according to the keyword and plaintext. Vigenere cipher is considered to be the most efficient Polyalphabetic substitution cipher. But it is vulnerable to attacks, due to its repeating nature of the keyword. To overcome this vulnerability, here we are presenting a new Polyalphabetic substitution scheme which uses infinite number of 26 x 26 random tables for encryption. During encryption, whenever the keyword repeats, this proposed Polyalphabetic substitution cipher generates a 26 x 26 alphabetical random table. Instead of using the same Vigenere Table here we are using an infinite number of alphabetical tables depending on the length of the plaintext and keyword. Each random table will be completely independent from the previous table. This will reduces the repeating sequences in the ciphertext. The repeating nature of the keyword does not help the crackers to break this code. So this proposed Polyalphabetic substitution cipher is considered as an unbreakable cryptosystem. The Proposed Polyalphabetic cipher can provide security for many applications such as web transactions, web transactions, personal emails, secret information transmitted between public or private organization, military application etc.

2015 ◽  
Vol 63 (4) ◽  
pp. 989-996
Author(s):  
T. Adamski ◽  
W. Nowakowski

Abstract Generators of finite cyclic groups play important role in many cryptographic algorithms like public key ciphers, digital signatures, entity identification and key agreement algorithms. The above kinds of cryptographic algorithms are crucial for all secure communication in computer networks and secure information processing (in particular in mobile services, banking and electronic administration). In the paper, proofs of correctness of two probabilistic algorithms (for finding generators of finite cyclic groups and primitive roots) are given along with assessment of their average time computational complexity.


Author(s):  
B. Murali Krishna ◽  
Chella Santhosh ◽  
Shruti Suman ◽  
SK. Sadhiya Shireen

A highly secure communication method is essential for end users for the exchange of information which is not interpreted by an intruder. Cryptography plays a crucial role in the current and upcoming digital worlds, for secure data transmission in wired and wireless networks. Asymmetric and symmetric cryptographic algorithms encrypt data against vulnerable attacks and transfer to authenticated users. Steganography is a method for providing secure information with the help of a carrier file (text, video, audio, image, etc.). This paper proposes Deoxyribonucleic Acid (DNA)-based asymmetric algorithm which is used to encrypt the patient’s secret information and its performance is compared with ElGamal, RSA and Diffie–Hellman (DH) cryptographic algorithms. The proposed asymmetric algorithm is applied to image steganography which is used for encrypting and concealing the patient’s secret information in a cover image. The proposed method consumes less hardware resources with improved latency. Dynamic Partial Reconfiguration (DPR) allows to transform a selective area rather than complete shutdown of the entire system during bitstream configuration. Cryptosystem with DPR is designed, synthesized in Xilinx Vivado and simulated in Vivado simulator. The design is targeted at Basys3, Nexys4 DDR and Zync-7000 all-programmable SOC (AP SoC) architectures and programmed with secure partial bit files to avoid vulnerable attacks in the channel.


2012 ◽  
Vol 6 (4) ◽  
pp. 71-93
Author(s):  
Ming Yang ◽  
Chih-Cheng Hung ◽  
Edward Jung

Secure communication has traditionally been ensured with data encryption, which has become easier to break than before due to the advancement of computing power. For this reason, information hiding techniques have emerged as an alternative to achieve secure communication. In this research, a novel information hiding methodology is proposed to deliver secure information with the transmission/broadcasting of digital video. Secure data will be embedded within the video frames through vector quantization. At the receiver end, the embedded information can be extracted without the presence of the original video contents. In this system, the major performance goals include visual transparency, high bitrate, and robustness to lossy compression. Based on the proposed methodology, the authors have developed a novel synchronization scheme, which ensures audio/video synchronization through speech-in-video techniques. Compared to existing algorithms, the main contributions of the proposed methodology are: (1) it achieves both high bitrate and robustness against lossy compression; (2) it has investigated impact of embedded information to the performance of video compression, which has not been addressed in previous research. The proposed algorithm is very useful in practical applications such as secure communication, captioning, speech-in-video, video-in-video, etc.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dan Deng ◽  
Chao Li ◽  
Lisheng Fan ◽  
Xin Liu ◽  
Fasheng Zhou

This paper studies the impacts of antenna selection algorithms in decode-and-forward (DF) cooperative nonorthogonal multiple access (NOMA) networks, where the secure information from the relay can be overheard by an eavesdropper in the networks. In order to ensure the secure transmission, an optimal antenna selection algorithm is proposed to choose one best relay’s antenna to assist the secure transmission. We study the impact of antenna selection on the system secure communication through deriving the analytical expression of the secrecy outage probability along with the asymptotic expression in the high regime of signal-to-noise ratio (SNR) and main-to-eavesdropper ratio (MER). From the analytical and asymptotic expressions, we find that the system secure performance is highly dependent on the system parameters such as the number of antennas at the relay, SNR, and MER. In particular, the secrecy diversity order of the system is equal to the antenna number, when the interference from the second user is limited.


Author(s):  
Gandharba Swain ◽  
Dodda Ravi Kumar ◽  
Anita Pradhan ◽  
Saroj Kumar Lenka

In this paper we present a technique for secure communication between two parties Alice and Bob. We use both cryptography and steganography. We take image as the carrier to use steganography. By using our own substitution cipher called two square reverse we encrypt the secret information. Then the cipher text of the secret information is embedded into the carrier image in LSB (least significant bit) minus one position of some selected bytes. The byte selection is done depending on the bit pattern of the secret information. Thus the embedding locations are dependent on the secret message. So the intruder will face difficulties to locate the bits. After embedding the resultant image will be sent to the receiver, the receiver will apply the reverse operation what the sender has done and get the secret information.


2020 ◽  
Vol 10 (2) ◽  
pp. 9-17
Author(s):  
Tuan Nhu Nguyen

Abstract— To secure communication from the sender to the receiver in wireless networks, cryptographic algorithms are usually used to encrypt data at the upper layers of a multi-tiered transmission model. Another emerging trend in the security of data transmitted over wireless networks is the physical layer security based on beamforming and interference fading  communication technology and not using cryptographic algorithms. This trend has attracted increasing concerns from both academia and industry. This paper addresses how physical layer security can protect secret data compare with the traditional cryptographic encryption and which is the better cooperative relaying scheme with the state of the art approached methods in wireless relaying beamforming network.Tóm tắt— Việc bảo mật truyền thông vô tuyến từ nơi gửi đến nơi nhận thường sử dụng các thuật toán mật mã để mã hoá dữ liệu tại các tầng phía trên trong mô hình phân lớp. Một xu hướng khác đang được quan tâm rộng rãi là bảo mật tầng vật lý dựa trên kỹ thuật truyền tin beamforming và kỹ thuật tương tác fading kênh chủ động. Xu hướng này hiện đang được thu hút cả trong giới công nghiệp và nghiên cứu. Đóng góp của bài báo này là làm rõ khả năng bảo mật tầng vật lý và so sách chúng với phương pháp bảo mật dùng kỹ thuật mật mã truyền thống. Bài báo cũng so sánh hai kỹ thuật chuyển tiếp được sử dụng chính trong bảo mật tầng vật lý cho mạng vô tuyến chuyển tiếp là Amplify-and-Forward và Decode-and-Forward.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 359
Author(s):  
Teh-Lu Liao ◽  
Hsin-Chieh Chen ◽  
Chiau-Yuan Peng ◽  
Yi-You Hou

Recently, with the rapid development of biomedical information, establishing secure communication and appropriate security services has become necessary to ensure a secure information exchange process. Therefore, to protect the privacy and confidentiality of personal data, in this study, we use a chaotic system, Lü system of the Lorenz-like system, to generate chaotic signals and apply them to encrypt the biomedical information. In addition, with one of the states of the chaotic system, we design a simple proportional-derivative (PD) controller to synchronize the master-slave chaotic systems for decrypting the biomedical information. Then, we encrypt the biomedical information, electrocardiography (ECG) and electromyography (EMG), measured about 30 s to 60 s to get tens of thousands of data from the subjects at the transmitting side (master) and send them to the receiving side (slave). After the receiving side receives the encrypted information, it decrypts them with the PD controller and then obtains the 1 mV to 2 mV biomedical signals. Thus, the security of the biomedical information can be ensured and realized.


Internet of Things (IoT) becomes part of our daily life. IoT has greatly uplifted the human life and has touched many aspect in our life style. IoT devices are sophisticated lowend device having limited computational and energy resources. Most of the cryptographic algorithms are based on complex mathematical calculation which is not feasible to be computed on IoT devices. Hence presently IoT devices lack strong security features. Security and privacy are becoming the real concern for IoT devices. In this paper we are exploring the various cryptographic algorithm which can be used for IoT device authentication and secure communication. The overall system is designed considering the light weight factor, scalability, time complexity and ease of implementation


Author(s):  
Samed Bajrić

The underlying vision of the internet of things (IoT) is to create a world where the real and the virtual realms are converging to create smart environments that makes energy, transport, cities, and many other areas more intelligent. With the IoT, the physical world is being interfaced through the things to the virtual world in heterogeneous environment. In heterogeneous environment, privacy and security are the major challenges. The secure information exchange is most critical pitfall to ensure the system security. This chapter gives a detailed analysis of cryptographic algorithms in IoT. A comparison of lightweight cryptography algorithms on basis of block size, key size, gate equivalents, and throughput is given. Moreover, the various security issues in IoT are discussed along with possible solution.


Author(s):  
Andrey Ravilevich Gazizov

The article discusses the concept of organizational formation of the protected information system of a commercial enterprise. The content and classification of information resources, subject to the characteristics of the trading activities, information about customers, employees, communicative, general, financial and legal data have been given; the level of importance has been revealed. The basic principles of creating the protected information system in terms of specificity of a commercial enterprise (continuity, integrity, systemacy, legitimacy) have been formulated. Taking into account the specified principles, the thematic content of requirements to the protected information system has been determined: centralization, planning, preciseness, purposefulness, activity, reliability, flexibility, originality, openness, economic efficiency. There are given recommendations to building a secure information system, which include easy maintenance and transparency for users of the mechanisms of the information system protection; a minimum set of privileges for users; ability to disable the security mechanisms of information system in the critical circumstances; independence of protection mechanisms from the information system; assumptions about the worst intentions and potential users’ errors; minimization of information about existing mechanisms of information system protection. It has been determined that the information system protection includes two components: organizational and administrative (including the internal documents regulating the issues of protection) and technical (including the subsystems of anti-virus protection, back up and archiving, email security, intrusion detection, protection of data transmission channels, identification and authentication of users); their functional purpose being analyzed. The purpose and content of security policy of information system were determined as a theoretical basis of organizational and administrative components of the protection system. It has been inferred about the universality of the presented method providing secure communication for the users of a business.


Sign in / Sign up

Export Citation Format

Share Document