scholarly journals Impact of Chloride Attack on Basalt Fibre Reinforced Concrete

Basalt fibers are extensively used construction materials due to its advantages. This paper emphasizes the behavior of basalt fiber reinforced concrete (BFRC) subjected to chloride attack. Basalt fibers are added in proportions of 0.5%, 1.0%, 1.5%, 2%, and 2.5%. Grade of concrete is M40. Cubes were casted for a standard size of 150*150*150mm and cured for a period of 28 days. Chloride attack is calculated by dipping the cubes in 5% of sodium chloride solution for a span of 28, 60 and 90 days. To estimate the chloride attack impact on BFRC, BFRC is tested for compressive strength, Acid attack and Rapid chloride penetration test.

2019 ◽  
Vol 5 (1) ◽  
pp. 172 ◽  
Author(s):  
IfeOluwa B. Adejuyigbe ◽  
Paschal C. Chiadighikaobi ◽  
Donatus A. Okpara

To a large extend sustainable construction of any structure greatly depends on the materials used in its formation. Traditionally, materials such as bricks, mortar, steels are still important components of most buildings. But modern technology is equally changing how materials are created and used.Based on the above explanation, the objective of this paper was to compare the steel structures with basalt fiber reinforced concrete. As basalt fiber is still not wide spread, this paper focus on the advantages, usages and applications of basalt fiber reinforced concrete to solve construction and structural challenges. The method and analysis used in this paper was derived from research and works done by previous authors on similar topics. Previous research information show that producers and users of these materials make choice of building materials to depend on the area the structure is proposed to be built and on the taste and ideas given by the client. Their consideration is often devoid of environmental, psychological, social and economy factors. The research methods lead to the understanding on the use and importance of basalt fiber concrete for landfills, leachate reservoirs and multifunctional structure.This paper helps structural users and engineers to know that green materials with good environmental characteristics that support nature are being considered as best construction materials due to what they are composed of. Waste and cost are also crucial as far as construction materials are concern. Even now, management of waste products from landfills specially leachates requires better construction designs in tropical region like Nigeria. More so, in line with the recent safe the climate calls, efforts to select the kind of material used in raising structures are becoming unavoidable.


2019 ◽  
Vol 8 (3) ◽  
pp. 2909-2912

The efficacy of fiber reinforced concrete in various application of civil engineering is unassailable. It is a heterogeneous material that includes the fibrous substance which increases its structural integrity and cohesion. In recent years, continuous basalt fibers extruded from naturally basalt rock are attracted attention due to its high temperature and abrasion resistance. Basalt fibers has emerged as a contender in fiber reinforcement composites. This paper aims to evaluate the outcome of basalt fiber on the mechanical strength of concrete and also identify the content that have a optimum influence on concrete. Compressive, split tensile and flexural strength of basalt fiber reinforced concrete is increased than the control concrete. The experimental study shows that the mechanical strength of concrete is increased up to 0.9% of basalt fiber in volume fraction. From the result it is observed that the optimum content of Basalt fiber is 0.9% and the ability of basalt fiber to arrest the cracks area indicated as reason for escalation in mechanical properties.


Author(s):  
M. Nazhuev ◽  
M. Samofalova ◽  
D. El'shaeva ◽  
Y. Zherebtsov ◽  
N. Dotsenko ◽  
...  

Today, dispersed-reinforced concrete is a promising structural building material. In order to improve the strength characteristics of basalt fiber reinforced concrete, authors studies the effect of prescription factors, namely the percentage of fiber reinforcement and the percentage of coarse aggregate fractions. In total, 18 series of basic samples of standard size are manufactured and tested: 27 cubes with dimensions of 100x100x100 mm for compression tests; 27 prisms with dimensions 100x100x400 mm for tensile bending tests. Also, calculations of strength characteristics are carried out depending on recipe factors, the calculations are made by the method of mathematical planning of the experiment - a full-factor experiment (FFE 22). According to the results of the study, the basic regression equations are obtained by the least squares method, which are presented in the form of polynomials of the 2nd degree. It is concluded that the most effective would be the use of basalt fiber in the amount of 4.5 % of the mass of the concrete mixture and the use of a coarse aggregate with a fraction of 5-10 mm in the amount of 40 %, and fractions of 10-20 mm in the amount 60 %.


2020 ◽  
Vol 852 ◽  
pp. 59-69
Author(s):  
Zhao Liang Sheng ◽  
Yan Fu Duan ◽  
Duo Tian Xia ◽  
Olivier Thierry

In order to explore the application of nanomaterials in fiber concrete, in this research, the effect of nanomaterials SiO2 on the basalt fiber concrete was studied with experimental analysis methods. The variation values of mechanical properties were calculated respectively. On this basis, the influences of silicon dioxide nanometer and basalt fibers on the mechanical properties of nanosilica silicon dioxide nanometer basalt fiber concrete were studied. Different contents of silicon dioxide nanometer were added to concrete, different contents of basalt fibers were added to concrete, and both were added to concrete. The results showed that adding silicon dioxide nanometer could modify building concrete and significantly improve the mechanical properties of concrete. the increase of silicon dioxide nanometer content of nanomaterials, the strength of concrete showed a trend of first rising and then falling. When silicon dioxide nanometer content was 1.2%, the mechanical strength was the largest. As the contents of basalt fiber increase, concrete strength showed a trend of first increasing and then decreasing. When basalt fiber content was 3kg/m3, it was the optimal content and the concrete strength was the largest. And the mechanical properties of the concrete mixed with silicon dioxide nanometer and basalt fibers were significantly improved.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1138
Author(s):  
Yang Luo ◽  
Ditao Niu ◽  
Li Su

The effect of fibre reinforcement on the chloride diffusion property of concrete is controversial, and the coupling effect of sulphate erosion and drying–wetting cycles in marine environments has been neglected in previous studies. In this study, the chloride diffusion property of hybrid basalt–polypropylene fibre-reinforced concrete subjected to a combined chloride–sulphate solution under drying–wetting cycles was investigated. The effects of basalt fibre (BF), polypropylene fibre (PF), and hybrid BP–PF on the chloride diffusion property were analysed. The results indicate that the presence of sulphate inhibits the diffusion of chloride at the early stage of erosion. However, at the late stage of erosion, sulphate does not only accelerate the diffusion of chloride by causing cracking of the concrete matrix but also leads to a decrease in the alkalinity of the pore solution, which further increases the risk of corrosion of the reinforcing steel. An appropriate amount of fibre can improve the chloride attack resistance of concrete at the early stage. With the increase in erosion time, the fibre effectively prevents the formation and development of sulphate erosion microcracks, thus reducing the adverse effects of sulphate on the resistance of concrete to chloride attack. The effects of sulphate and fibre on the chloride diffusion property were also elucidated in terms of changes in corrosion products, theoretical porosity, and the fibre-matrix interface transition zone.


Author(s):  
Vera V. Galishnikova ◽  
Alireza Heidari ◽  
Paschal C. Chiadighikaobi ◽  
Adegoke Adedapo Muritala ◽  
Dafe Aniekan Emiri

Relevance. The load on a reinforced concrete slab with high strength lightweight aggregate concrete leads to increased brittleness and contributes to large deflection or flexure of slabs. The addition of fibers to the concrete mix can improve its mechanical properties including flexure, deformation, toughness, ductility, and cracks. The aims of this work are to investigate the flexure and ductility of lightweight expanded clay concrete slabs reinforced with basalt fiber polymers, and to check the effects of basalt fiber mesh on the ductility and flexure. Methods. The ductility and flexural/deflection tests were done on nine engineered cementitious composite (expanded clay concrete) slabs with dimensions length 1500 mm, width 500 mm, thickness 65 mm. These nine slabs are divided in three reinforcement methods types: three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm (first slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed chopped basalt fiber plus basalt fiber polymer (mesh) of cells 2525 mm (second slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed basalt fiber of length 20 mm, diameter 15 m (third slab type). The results obtained showed physical deflection of the three types of slab with cracks. The maximum flexural load for first slab type is 16.2 KN with 8,075 mm deflection, second slab type is 24.7 KN with 17,26 mm deflection and third slab type 3 is 32 KN with 15,29 mm deflection. The ductility of the concrete slab improved with the addition of dispersed chopped basalt fiber and basalt mesh.


2021 ◽  
Vol 11 (16) ◽  
pp. 7634
Author(s):  
Aleksandr V. Shilov ◽  
Alexey N. Beskopylny ◽  
Besarion Meskhi ◽  
Dmitry Mailyan ◽  
Dmitry Shilov ◽  
...  

Increasing the bearing capacity of reinforced concrete structures, reducing material consumption, and ensuring quality are critical in modern construction. The article presents an experimental study of the ultimate compressive strains of short fiber basalt reinforced concrete columns and provides recommendations for increasing the bearing capacity using steel reinforcement bars with greater strength. The columns were tested in an upright position using a hydraulic press. Strains were measured with dial indicators and a strain gauge station. It was shown that the addition of 10% coarse basalt fiber increased the ultimate compressibility of concrete on ordinary crushed stone by 19.8%, and expanded clay concrete by 26.1%, which led to the strain hardening of concrete under compression by 9.0% and 12%, respectively. Ultimate compressive strains in fiber-reinforced concrete short columns with combined reinforcement increased 1.42 times in columns on a lightweight aggregate and 1.19 times on heavy aggregate. An increase in the ultimate compressibility of concrete makes it possible to use steel reinforcement with greater strength in compressed elements as the concrete crushing during compression occurs primarily due to the reaching of critical values by tensile stresses in the transverse direction. This makes it possible to manufacture structures with a higher load-bearing capacity and less material consumption. A practical example of the application of the proposed approach is given.


2020 ◽  
Vol 198 ◽  
pp. 01010
Author(s):  
Duo Wu

Concrete structure will be corroded under acid rain scouring and soaking for a long time, which has a great influence on its durability life. In order to further study the damage characteristics of fiber reinforced concrete under acid rain erosion, the formation mechanism of acid rain and its influence on the corrosion and deterioration of concrete and fiber materials were analyzed in this paper. Taking basalt fiber concrete as an example, the characteristics such as porosity, compressive strength and mechanical indexes were studied and analyzed. Moreover, the reasons for the optimal fiber content was briefly analyzed. The results show that the inner structure of basalt concrete mixed with 0.1% fiber was the most stable and the corrosion resistance was the most satisfying.This conclusion has certain reference significance for the corrosion damage research of fiber reinforced concrete.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550040 ◽  
Author(s):  
PANDIAN BOTHI RAJA ◽  
SEYEDMOJTABA GHOREISHIAMIRI ◽  
MOHAMMAD ISMAIL

Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.


Sign in / Sign up

Export Citation Format

Share Document