scholarly journals Design and Implementation of Cost-Effective IoT Energy Meter to Monitor Energy Flow in Smart Grids

2020 ◽  
Vol 9 (1) ◽  
pp. 1584-1588

This paper presents a device that uses the evolving IoT technology to design and implement an internet-based energy meter. This meters, being cheap and easy-to-implement solution, enables consumers to monitor the daily usage of electric power easily. This work primarily concerns the energy-monitoring aspect of IoT, along with discussing other advantages of this meter, such as its ability to overcome human errors and reducing dependency on manual labor, besides reducing costs in energy consumption. The proposed design in case 1,and case2 which are comprises a low-cost wireless network for smart energy along with an android application capable of automatically reading the unit and then sending the data automatically provides great advantages to users by allowing them to keep a track of their meter reading. This system will help users by allowing them to not only take steps to reduce power wastage but also bring down costs of consumption, along with minimizing the threat of power theft, which is incurs great losses to power companies. Experimental results of this study show that the proposed IoT meter works efficiently and has proven its potential in practical applications at substantially reduced costs.

2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


Nukleonika ◽  
2016 ◽  
Vol 61 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Irina V. Litovko ◽  
Alexy A. Goncharov ◽  
Andrew N. Dobrovolskiy ◽  
Lily V. Naiko ◽  
Irina V. Naiko

Abstract The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aumber Abbas ◽  
Tanveer A. Tabish ◽  
Steve J. Bull ◽  
Tuti Mariana Lim ◽  
Anh N. Phan

AbstractGraphene quantum dots (GQDs), a novel type of zero-dimensional fluorescent materials, have gained considerable attention owing to their unique optical properties, size and quantum confinement. However, their high cost and low yield remain open challenges for practical applications. In this work, a low cost, green and renewable biomass resource is utilised for the high yield synthesis of GQDs via microwave treatment. The synthesis approach involves oxidative cutting of short range ordered carbon derived from pyrolysis of biomass waste. The GQDs are successfully synthesised with a high yield of over 84%, the highest value reported to date for biomass derived GQDs. As prepared GQDs are highly hydrophilic and exhibit unique excitation independent photoluminescence emission, attributed to their single-emission fluorescence centre. As prepared GQDs are further modified by simple hydrothermal treatment and exhibit pronounced optical properties with a high quantum yield of 0.23. These modified GQDs are used for the highly selective and sensitive sensing of ferric ions (Fe3+). A sensitive sensor is prepared for the selective detection of Fe3+ ions with a detection limit of as low as 2.5 × 10–6 M. The utilisation of renewable resource along with facile microwave treatment paves the way to sustainable, high yield and cost-effective synthesis of GQDs for practical applications.


2015 ◽  
Vol 220-221 ◽  
pp. 396-400
Author(s):  
Lauryna Šiaudinytė ◽  
Deividas Sabaitis ◽  
Domantas Bručas ◽  
Gintaras Dmitrijev

Production of high precision circular scales is a complicated process requiring expensive equipment and complex processes to achieve. Precision angle measurement equipment tends to be very expensive and therefore not accessible to all in need. Simplification of production of such devices can lead to reducing costs of angle measurement systems ensuring easier accessibility. A new method of producing precision circular scales using low cost mass production can reduce the costs of these devices drastically. Therefore, utilising a common CD technology as the basis for such scales is analysed. This paper deals with the analysis of the newest laser cutting method for plastic circular scales. Preliminary results of manufacturing such scales are presented in the paper as well as measurements of the grating of the scale were performed. The quality of different scales manufactured using different laser types is analysed in the study. The cost – effective alternative of manufacturing circular scales is discussed in the paper.


2020 ◽  
Author(s):  
Shashank Singh ◽  
Selvan M. P.

<div>Demand response (DR) is one of the demand side management features under the paradigm of smart grids, wherein the consumers are encouraged to participate in the utility operations through active response to electricity price signals by altering their demand patterns. One impediment in employing demand response schemes in India is the fixed electricity tariff for the domestic consumers, which most of the Indian state utilities follow. Interestingly, the Tamil Nadu State Electricity Board (TNEB) follows an incremental block rate tariff for domestic consumers, which provides an opportunity for the implementation of proposed self–DR scheme. Hence firstly, this paper presents the design and development of a low-cost single-phase smart energy meter (SEM) which incorporates a TNEB tariff structure. Secondly, the development of an indigenous meter data management system (MDMS) software is attempted for the utility using open–source software tools. Finally, the idea of self-DR is introduced and emphasized through the coordinated operation of developed SEM and MDMS.</div>


Author(s):  
Anisha Verma ◽  
Sayani Bhattacharya

Microfluidics (MF) is the science dealing with the behavior, precise control, and manipulation of fluids as well as particles on the scale of tens to hundreds of micrometers. It is also utilized for chemical and biological applications, usually called micro–Total Analysis Systems (mTAS) or Lab-on-a-chip (LOC). MF is a fascinating and capable technology with various superior benefits compared to conventional macro-scale platforms, such as the lesser requirement of sample and reagent volumes, higher sensitivity, low cost, portability, faster processing of samples and potential to be automated and highly integrated to reduce human errors. The concept of transformation of meso to nanoliters using MF technology has shown its potential in the healthcare system for early diagnosis, and personalized medicine. The integrated multifunctional system with parallelization provides a better and faster process control. Minimization of the consumption of fluid makes the technology safer in every aspect of the development process, analysis, and storage. The impressive improvement in patient care and monitoring has led to the commercial motivation of the pharmaceutical industry to develop new drugs and modify existing products with better efficacy and safety in a cost-effective manner using MF technologies. Hence, the present review briefs on the applications of MF technology in the key issues of the drug discovery process, overcoming the limitations of development of analytical procedures and prosperous pharmaceutical manufacturing for novel controlled and targeted release dosage forms to fabricate quality products.


2021 ◽  
Vol 71 (03) ◽  
pp. 365-371
Author(s):  
Anshika Verma ◽  
Naina Narang ◽  
Dharmendra Singh ◽  
Ghanshyam Das Varma

Microwave absorbing materials (MAMs) are widely researched due to their use in many practical applications including both civil and defense sectors. Irrespective of the humongous efforts of various researchers, the development of a wide bandwidth, thin coating thickness, and low-cost microwave absorber is still a challenging task. The existing materials have not been able to meet all the specifications together at once and require a trade-off in the performance parameters. In this paper, we have empirically corroborated a cost-effective technique using E-waste material for synthesising composite MAM. It is herein shown that the addition of different wt% of copper, graphite, and titanium dioxide in the E-waste successfully resulted in enhanced absorption due to altered electrical properties of the E-waste suitable for microwave absorption. The multilayering technique with the help of a genetic algorithm has also been used to broaden the bandwidth. As a result, a three-layer MAM with the total coating thickness of 3.2 mm has been synthesised showing the wideband absorption bandwidth of 8.47 GHz in the frequency range from 6.92 to 15.39 GHz. The results suggested that microwave absorption of E-waste can be drastically improved by appropriately tailoring electrical parameters such as permittivity and permeability.


2020 ◽  
Author(s):  
Shashank Singh ◽  
Selvan M. P.

<div>Demand response (DR) is one of the demand side management features under the paradigm of smart grids, wherein the consumers are encouraged to participate in the utility operations through active response to electricity price signals by altering their demand patterns. One impediment in employing demand response schemes in India is the fixed electricity tariff for the domestic consumers, which most of the Indian state utilities follow. Interestingly, the Tamil Nadu State Electricity Board (TNEB) follows an incremental block rate tariff for domestic consumers, which provides an opportunity for the implementation of proposed self–DR scheme. Hence firstly, this paper presents the design and development of a low-cost single-phase smart energy meter (SEM) which incorporates a TNEB tariff structure. Secondly, the development of an indigenous meter data management system (MDMS) software is attempted for the utility using open–source software tools. Finally, the idea of self-DR is introduced and emphasized through the coordinated operation of developed SEM and MDMS.</div>


Author(s):  
Tanwi Singh ◽  
Anshuman Sinha

The major risk associated with low platelet count in pregnancy is the increased risk of bleeding during the childbirth or post that. There is an increased blood supply to the uterus during pregnancy and the surgical procedure requires cutting of major blood vessels. Women with thrombocytopenia are at increased risk of losing excessive blood. The risk is more in case of caesarean delivery as compared to vaginal delivery. Hence based on above findings the present study was planned for Assessment of the Platelet Count in the Pregnant Women in IGIMS, Patna, Bihar. The present study was planned in Department of Pathology, Indira Gandhi Institute of Medical Science, Patna, Bihar, India. The present study was planned from duration of January 2019 to June 2019. In the present study 200 pregnant females samples received for the platelet estimation were enrolled in the present study. Clinically platelet indices can be a useful screening test for early identification of preeclampsia and eclampsia. Also platelet indices can assess the prognosis of this disease in pregnant women and can be used as an effective prognostic marker because it correlates with severity of the disease. Platelet count is a simple, low cost, and rapid routine screening test. Hence the data generated from the present study concludes that platelet count can be used as a simple and cost effective tool to monitor the progression of preeclampsia, thereby preventing complications to develop during the gestational period. Keywords: Platelet Count, Pregnant Women, IGIMS, Patna, Bihar, etc.


2019 ◽  
Vol 7 (1) ◽  
pp. 5-10
Author(s):  
Saman Shahid ◽  
Saima Zafar ◽  
Mansoor Imam ◽  
Muhammad Usman Chishtee ◽  
Haris Ehsan

There is an increased prevalence of heart diseases in developing countries and continuous monitoring of heart beats is very much important to reduce hospital visits, health costs and complications. The Internet of Things (IoT) equipped with microcontrollers and sensors can give an easy and cost-effective remote health monitoring. We developed a Heart Beat monitoring module based on an android application. The software involved was the Android Application developed using Android Studio, which is the Integrated Development Environment (IDE). This app retrieved the data from the open IoT platform thingspeak.com. A highly sensitive Pulse Sensor was used to measure the heartbeat of the patient automatically. An Arduino Uno microcontroller interfaced with a Wi-Fi module ESP8266 used to transmit pulse reading over the internet using Wi-Fi. The heartbeat was displayed on the LCD of the patient in run-time. The heartbeat in beats per minute (BPM) was plotted against time (minutes). A mounted pulse sensor to the patient had monitored the heartbeat and transmitted it in the form of voltage signal to the microcontroller, which converted it back into a mathematical value. The Arduino transmitted the data onto the thingspeak.com portal, where it was plotted on a graph and the values were stored for future assessment. The user of the app was given a things peak API and the channel number as an access code, through which physician or nurse can accessed the patient’s data. IoT based heartbeat module as an android application can provide a convenient, cost effective and continuous remote measurements for heart patients to help physicians and nurses update. This app can reduce the burden of hospital visits or admissions for elderly patients.


Sign in / Sign up

Export Citation Format

Share Document