scholarly journals Effect of Temperature and Nanoparticle Concentration on the Viscosity of Glycerine-water based SiO2 Nanofluids

Author(s):  
M.L.R. Chaitanya Lahari ◽  
◽  
P. Haseena Bee ◽  
P.H.V. Sesha Talpa Sai ◽  
K.S. Narayanaswamy ◽  
...  

Dynamic viscosity of SiO2/22nm nanofluids prepared in a glycerine-water (30:70 by volume) mixture base liquid, referred to as GW70, is measured experimentally. Nanofluids with concentrations of 0.2, 0.6, and 1.0 percent are produced, and viscosity measurements are carried out at temperatures ranging from 20 to 80 oC using a LVDV-2T model Brookfield Viscometer. The particle size and elemental composition of nanoparticles are determined using FESEM and EDX. XRD images confirm the SiO2 peaks in the crystalline structure. The rheology of nanofluids is influenced by the nanoparticle’s concentration. In the experimental temperature and concentration range, nanofluids show Newtonian behavior. The viscosity of nanofluids enhanced as particle concentration increased and reduced as temperature increased. For 1.0 percent vol. concentration at 20oC, the maximum viscosity value is achieved, and for 0.2 percent vol. concentration at 80oC, the lowest viscosity value is observed. The viscosity of the glycerine-water base fluid was also determined at 20, 40, 60, and 80 degrees Celsius. The viscosity ratio of nanofluids to the base liquid is found to be more than one for all the nanofluids. This viscosity data is useful to estimate HTC of glycerine-water-based silica nanofluids.

2013 ◽  
Vol 318 ◽  
pp. 507-512 ◽  
Author(s):  
Qian Sheng Yue ◽  
Qing Zhi Yang ◽  
Shu Jie Liu ◽  
Bao Sheng He ◽  
You Lin Hu

The rheological property of the drilling fluid was one of the focus problems in deep-water drilling, which was widely concerned. In the article, the viscosity-temperature properties of commonly used water soluble polymeric solution, polymeric brine solution, bentonite slurry, polyacrylamide-potassium chloride drilling fluid with different densities and water-base drilling fluid systems commonly used for China offshore well drillings were studied. 4°C-to-20°C viscosity ratio and 4°C-to-20°C YP ratio were used to judge the thickening level of drilling fluids due to low temperature. The experimental results show that on the condition of without considering the influence of pressure on the rheological property of water-base drilling fluid, its viscosity and yield point raised obviously with the decrease of temperature, but the increase level is proximately the same, its 4°C-to-20°C apparent viscosity ratio is basically within the 1.50. Analysis indicates that the viscosity of water-base drilling fluid depends on the viscosity of dispersed media. The performance of water medium determines the viscosity-temperature property of the water-based drilling fluid. It is proposed that in deep water drillings, if a water-base drilling fluid is used, it is not necessary to emphasize the influence of deep water and low temperature on the flowability. On the condition of guaranteeing wellbore stability and borehole cleaning, it is more suitable for using the water-base drilling fluid with low viscosity and low gel strength for deep water well drillings.


2021 ◽  
Vol 379 ◽  
pp. 457-465
Author(s):  
Tiancheng Zhang ◽  
Quanle Zou ◽  
Zhiheng Cheng ◽  
Zihan Chen ◽  
Ying Liu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1291
Author(s):  
Abram I. Livashvili ◽  
Victor V. Krishtop ◽  
Polina V. Vinogradova ◽  
Yuriy M. Karpets ◽  
Vyacheslav G. Efremenko ◽  
...  

In this study, the nonlinear dynamics of nanoparticle concentration in a colloidal suspension (nanofluid) were theoretically studied under the action of a light field with constant intensity by considering concentration convection. The heat and nanoparticle transfer processes that occur in this case are associated with the phenomenon of thermal diffusion, which is considered to be positive in our work. Two exact analytical solutions of a nonlinear Burgers-Huxley-type equation were derived and investigated, one of which was presented in the form of a solitary concentration wave. These solutions were derived considering the dependence of the coefficients of thermal conductivity, viscosity, and absorption of radiation on the nanoparticle concentration in the nanofluid. Furthermore, an expression was obtained for the solitary wave velocity, which depends on the absorption coefficient and intensity of the light wave. Numerical estimates of the concentration wave velocity for a specific nanofluid—water/silver—are given. The results of this study can be useful in the creation of next-generation solar collectors.


2018 ◽  
Vol 9 (1) ◽  
pp. 87 ◽  
Author(s):  
Sarah Simpson ◽  
Austin Schelfhout ◽  
Chris Golden ◽  
Saeid Vafaei

Due to the more powerful and miniaturized nature of modern devices, conventional heat-transfer working fluids are not capable of meeting the cooling needs of these systems. Therefore, it is necessary to improve the heat-transfer abilities of commonly used cooling fluids. Recently, nanoparticles with different characteristics have been introduced to base liquids to enhance the overall thermal conductivity. This paper studies the influence of various parameters, including base liquid, temperature, nanoparticle concentration, nanoparticle size, nanoparticle shape, nanoparticle material, and the addition of surfactant, on nanofluid thermal conductivity. The mechanisms of thermal conductivity enhancement by different parameters are discussed. The impact of nanoparticles on the enhanced thermal conductivity of nanofluids is clearly shown through plotting the thermal conductivities of nanofluids as a function of temperature and/or nanoparticle concentration on the same graphs as their respective base liquids. Additionally, the thermal conductivity of hybrid nanofluids, and the effects of the addition of carbon nanotubes on nanofluid thermal conductivity, are studied. Finally, modeling of nanofluid thermal conductivity is briefly reviewed.


2020 ◽  
Vol 59 (12) ◽  
pp. 935-949
Author(s):  
Helene Van Ammel ◽  
Paula Moldenaers ◽  
Ruth Cardinaels

AbstractThe dynamics of single droplets containing non-Brownian particles are studied. The particle over droplet size ratio (r/R) is changed by using different particle sizes (r/R = 0.02–0.4). Additionally, the effect of particle concentration (5–20 vol%) is investigated. The dynamics of droplets with r/R = 0.02 show good agreement with the corresponding particle-free reference system which has a comparable viscosity ratio. Hence, this droplet phase can be considered as a homogenous medium characterized by its bulk viscosity which is governed by the particle concentration. However, droplets with r/R ≥ 0.1 show a more suppressed deformation and slower transient dynamics and, therefore, behave as a slightly more viscous medium than expected based on their bulk viscosity. These effects become more pronounced at higher particle concentrations and higher r/R. Moreover, local particle effects like asymmetric droplet shapes, oscillating droplet shapes, and tip streaming start to influence the droplet dynamics at particle concentrations around 15 vol%.


Friction ◽  
2020 ◽  
Author(s):  
Weiwei Tang ◽  
Zhiqiang Jiang ◽  
Baogang Wang ◽  
Yufeng Li

AbstractBlack phosphorus quantum dots (BPQDs), obtained via a typical solution-based top-down method, were used as water-based lubricant additives. BPQDs exhibited remarkable friction reduction and anti-wear properties even at the ultra-low concentration of 0.005 wt%, which reduced the friction coefficient and wear volume of the base liquid by 32.3% and 56.4%, respectively. In addition, the load-supporting capacity of the base liquid increased from 120 N to over 300 N. BPQDs-based additives exhibited a relatively long lifetime at a relatively high load of 80 N. The performance of BPQDs considerably exceeded that of the BP; this may be attributed to their small and uniform particle size, good dispersion stability in water, and high reactivity at the frictional surfaces. The results of the surface wear resistance analysis demonstrated that a robust tribochemical film with a thickness of approximately 90 nm was formed on the rubbing surface lubricated with 0.005 wt% of BPQDs dispersion. Moreover, the film served as a direct evidence of the excellent tribological performance of BPQDs.


Author(s):  
Wenzheng Cui ◽  
Zhaojie Shen ◽  
Jianguo Yang ◽  
Shaohua Wu

Employing nanofluids is an innovative way to enhance heat transfer in cooling system of internal combustion engine. the reasons for the significantly enhanced heat transfer properties of nanofluids are various. On one hand, the markedly increased thermal conductivity is the most apparent reason; on the other hand, the changed rheology properties of base fluid due to the disordered movements of countless nanoparticles is even more important. Because the size scale of nanoparticles is too small, in some cases of computational simulations nanofluids is simplified as single-phase fluids. However, the influence of nanoparticles for flow behaviors of base fluids distinctly should not be ignored. By means of molecular dynamics method, a nano-scale simulation on the rheology of nanofluids could be conducted, therefore the movements of nanoparticles could be directly observed, which is conducive to reveal the influence of movements of nanoparticles for rheology of nanofluids. The present work is intended to perform a molecular dynamic simulation on the rheology of water based nanofluids. By applying temperature difference, the velocity and temperature distribution of fluid zone are calculated to evaluate heat transfer through nanofluids. Moreover, the influence of temperature for the movements of nanoparticle is discussed.


2002 ◽  
Vol 16 (17n18) ◽  
pp. 2765-2771 ◽  
Author(s):  
OANA BĂLĂU ◽  
DOINA BICA ◽  
MARTINA KONERACKA ◽  
PETER KOPČANSKY ◽  
DANIELA SUSAN-RESIGA ◽  
...  

Rheological and magnetorheological behaviour of monolayer and double layer sterically stabilized magnetic fluids, with transformer oil (UTR), diloctilsebacate (DOS), heptanol (Hept), pentanol (Pent) and water (W) as carrier liquids, were investigated. The data for volumic concentration dependence of dynamic viscosity of high colloidal stability UTR, DOS, Hept and Pent samples are particularly well fitted by the formulas given by Vand (1948) and Chow (1994). The Chow type dependence proved its universal character as the viscosity data for dilution series of various magnetic fluids are well fitted by the same curve, regardless the nonpolar or polar charcater of the sample. The magnetorheological effect measured for low and medium concentration water based magnetic fluids is much higher, due to agglomerate formation process, than the corresponding values obtained for the well stabilized UTR, DOS, Hept and Pent samples, even at very high volumic fraction of magnetic nanoparticles.


Author(s):  
А.В. Минаков ◽  
М.И. Пряжников ◽  
Д.В. Гузей ◽  
Д.В. Платонов

The results of an experimental study of the viscosity and thermal conductivity coefficients of suspensions with single-walled carbon nanotubes are presented. The range of nanotube mass concentrations ranged from 0.05 to 0.25 wt.%. The studied suspensions showed non-Newtonian behavior. Dependences of rheological parameters of suspensions on nanotube concentration were obtained. The influence of the base liquid on the viscosity and thermal conductivity of suspensions was established.


Sign in / Sign up

Export Citation Format

Share Document