scholarly journals An Assessment of the Reliability of the NIGNET Data

Author(s):  
E. G. Ayodele ◽  
C. J. Okolie ◽  
O. A. Mayaki

The Nigerian Geodetic Reference Frame is defined by a number of Continuously Operating Reference Stations (CORS) that constitute the Nigerian GNSS Network (NIGNET). NIGNET is essential for planning and national development with the main goal of ensuring consistency in the geodetic framework both nationally and internationally. Currently, the strength of the network in terms of data reliability has not been adequately studied due to the fact that research into CORS in Nigeria is just evolving, which constitutes a limitation in its applications. Therefore, the aim of this research is to explore the reliability of the 3-dimensional coordinates of NIGNET to inform usability and adequacy for both scientific and practical applications. In particular, this study examines if the 3-dimensional coordinates of NIGNET are equally reliable in terms of positional accuracy. Accordingly, this study utilised GNSS data collected over a period of six years (2011 – 2016) from the network to compute the daily geocentric coordinates of the stations. Exploratory and statistical data analysis techniques were used to understand the magnitude of the errors and the accuracy level in the 3-dimensional coordinates. For this purpose, accuracy metrics such as standard deviation (𝜎), standard error (𝑆𝐸) and root mean square error (RMSE) were computed. While One-way ANOVA was conducted to explore the coordinate differences. The results obtained showed that SE and RMSE ranged from 13.00 − 56.50𝑚𝑚 and 14.38 − 73.16𝑚𝑚 respectively, which signifies high accuracy. Overall, while 88% of the network showed a high level of positional accuracy, the reliability has been compromised due to excessive gaps in the data archiving. Therefore, due attention must be given to NIGNET to achieve its purpose in the provision of accurate information for various geospatial applications. Also, any efforts directed at understanding the practical implications of NIGNET must be well-embraced for the realization of its set objectives.

2016 ◽  
Vol 102 (1) ◽  
pp. 52-66 ◽  
Author(s):  
T. Liwosz ◽  
M. Ryczywolski

Abstract The new solution for the Polish geodetic primary GNSS network was created to verify the currently used reference frame (PL-ETRF2000). The new solution is based on more GNSS data (more daily observation sessions included, a longer data timespan, GLONASS observations added) which were processed in a newer reference frame (IGb08) according to up-to-date methodology and using the latest version of Bernese GNSS Software. The new long-term solution (spanning 3.7 years) was aligned to the IGb08 reference frame using a minimum constraints approach. We categorized Polish reference stations into two categories according to their data length. We obtained good agreement of the new solution with the PL-ETRF2000: for most stations position differences did not exceed 5 mm in horizontal, and 10 mm in vertical components. However, for 30 stations we observed discontinuities in position time series, mostly due to GNSS equipment changes, which occured after the introduction of PL-ETRF2000. Position changes due to the discontinuities reached 9.1 mm in horizontal components, and 26.9 mm in vertical components. The new solution takes into account position discontinuities, and in addition also includes six new stations which were installed after the introduction of the PL-ETRF2000. Therefore, we propose to update the currently-used reference frame for the Polish geodetic primary network (PL-ETRF2000) with the new solution. The new solution was also accepted by the EUREF Technical Working Group as a class A solution (highest accuracy) according to EUREF standards.


Author(s):  
C. Stöcker ◽  
F. Nex ◽  
M. Koeva ◽  
M. Gerke

Within the past years, the development of high-quality Inertial Measurement Units (IMU) and GNSS technology and dedicated RTK (Real Time Kinematic) and PPK (Post-Processing Kinematic) solutions for UAVs promise accurate measurements of the exterior orientation (EO) parameters which allow to georeference the images. Whereas the positive impact of known precise GNSS coordinates of camera positions is already well studied, the influence of the angular observations have not been studied in depth so far. Challenges include accuracies of GNSS/IMU observations, excessive angular motion and time synchronization problems during the flight. Thus, this study assesses the final geometric accuracy using direct georeferencing with high-quality post-processed IMU/GNSS and PPK corrections. A comparison of different data processing scenarios including indirect georeferencing, integrated solutions as well as direct georeferencing provides guidance on the workability of UAV mapping approaches that require a high level of positional accuracy. In the current research the results show, that the use of the post-processed APX-15 GNSS and IMU data was particularly beneficial to enhance the image orientation quality. Horizontal accuracies within the pixel level (2.8 cm) could be achieved. However, it was also shown, that the angular EO parameters are still too inaccurate to be assigned with a high weight during the image orientation process. Furthermore, detailed investigations of the EO parameters unveil that systematic sensor misalignments and offsets of the image block can be reduced by the introduction of four GCPs. In this regard, the use of PPK corrections reduces the time consuming field work to measure high quantities of GCPs and makes large-scale UAV mapping a more feasible solution for practitioners that require high geometric accuracies.


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Margaret Kalacska ◽  
Oliver Lucanus ◽  
J. Pablo Arroyo-Mora ◽  
Étienne Laliberté ◽  
Kathryn Elmer ◽  
...  

The rapid increase of low-cost consumer-grade to enterprise-level unmanned aerial systems (UASs) has resulted in the exponential use of these systems in many applications. Structure from motion with multiview stereo (SfM-MVS) photogrammetry is now the baseline for the development of orthoimages and 3D surfaces (e.g., digital elevation models). The horizontal and vertical positional accuracies (x, y and z) of these products in general, rely heavily on the use of ground control points (GCPs). However, for many applications, the use of GCPs is not possible. Here we tested 14 UASs to assess the positional and within-model accuracy of SfM-MVS reconstructions of low-relief landscapes without GCPs ranging from consumer to enterprise-grade vertical takeoff and landing (VTOL) platforms. We found that high positional accuracy is not necessarily related to the platform cost or grade, rather the most important aspect is the use of post-processing kinetic (PPK) or real-time kinetic (RTK) solutions for geotagging the photographs. SfM-MVS products generated from UAS with onboard geotagging, regardless of grade, results in greater positional accuracies and lower within-model errors. We conclude that where repeatability and adherence to a high level of accuracy are needed, only RTK and PPK systems should be used without GCPs.


2020 ◽  
Author(s):  
Diego Ellis-Soto ◽  
Kristy M. Ferraro ◽  
Matteo Rizzuto ◽  
Emily Briggs ◽  
Julia D. Monk ◽  
...  

Ecosystems are open systems connected through spatial flows of energy, matter, and nutrients. Predicting and managing ecosystem interdependence requires a rigorous quantitative understanding of the drivers and vectors that connect ecosystems across spatio-temporal scales. Animals act as such vectors when they transport nutrients across landscapes in the form of excreta, egesta, and their own bodies. Here, we introduce a methodological roadmap that combines movement, foraging, and ecosystem ecology to study the effects of animal-vectored nutrient transport on meta-ecosystems. The meta-ecosystem concept — the notion that ecosystems are connected in space and time by flows of energy, matter, and organisms across boundaries — provides a theoretical framework on which to base our understanding of animal-vectored nutrient transport. However, partly due to its high level of abstraction, there are few empirical tests of meta-ecosystem theory, and while we may label animals as important mediators of ecosystem services, we lack predictive inference of their relative roles and impacts on diverse ecosystems. Recently developed technologies and methods — tracking devices, mechanistic movement models, diet reconstruction techniques and remote sensing — have the potential to facilitate the quantification of animal-vectored nutrient flows and increase the predictive power of meta-ecosystem theory. Understanding the mechanisms by which animals shape ecosystem dynamics may be important for ongoing conservation, rewilding, and restoration initiatives around the world, and for more accurate models of ecosystem nutrient budgets. We provide conceptual examples that show how our proposed integration of methodologies could help investigate ecosystem impacts of animal movement. We conclude by describing practical applications to understanding cross-ecosystem contributions of animals on the move.


Author(s):  
Sassi Mohamed Taher

This document is meant to demonstrate the potential uses of remote sensing in managing water resources for irrigated agriculture and to create awareness among potential users. Researchers in various international programs have studied the potential use of remotely sensed data to obtain accurate information on land surface processes and conditions. These studies have demonstrated that quantitative assessment of the soil-vegetation-atmosphere transfer processes can lead to a better understanding of the relationships between crop growth and water management. Remote sensing and GIS was used to map the agriculture area and for detect the change. This was very useful for mapping availability and need of water resources but the problem was concentrating in data collection and analysis because this kind of information and expertise are not available in all country in the world mainly in the developing and under developed country or third world country. However, even though considerable progress has been made over the past 20 years in research applications, remotely sensed data remain underutilized by practicing water resource managers. This paper seeks to bridge the gap between researchers and practitioners first, by illustrating where research tools and techniques have practical applications and, second, by identifying real problems that remote sensing could solve. An important challenge in the field of water resources is to utilize the timely, objective and accurate information provided by remote sensing.


2014 ◽  
pp. 308-315
Author(s):  
Oleksandr Sudakov ◽  
Andrii Salnikov ◽  
Ievgen Sliusar ◽  
Oleksandr Boretskyi

Tools for archiving and extraction of data in Ukrainian National Grid for end-users’ applications are proposed, implemented and deployed for practical applications in medical imaging, non-linear dynamics, and molecular biology. Proposed tools provide the facilities to utilize large distributed storage space in grid infrastructures for different practical tasks including desktop applications. Tools may be successfully used even when on client platforms it is impossible to setup grid middleware, use web browser interfaces or grid security infrastructure authentication. Tools consist of extensible client compatible with different software and hardware platforms; web service for data transfer; web service for transparent data replication on grid storage elements.


2021 ◽  
Vol 11 (22) ◽  
pp. 10713
Author(s):  
Dong-Gyu Lee

Autonomous driving is a safety-critical application that requires a high-level understanding of computer vision with real-time inference. In this study, we focus on the computational efficiency of an important factor by improving the running time and performing multiple tasks simultaneously for practical applications. We propose a fast and accurate multi-task learning-based architecture for joint segmentation of drivable area, lane line, and classification of the scene. An encoder-decoder architecture efficiently handles input frames through shared representation. A comprehensive understanding of the driving environment is improved by generalization and regularization from different tasks. The proposed method learns end-to-end through multi-task learning on a very challenging Berkeley Deep Drive dataset and shows its robustness for three tasks in autonomous driving. Experimental results show that the proposed method outperforms other multi-task learning approaches in both speed and accuracy. The computational efficiency of the method was over 93.81 fps at inference, enabling execution in real-time.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1274-C1274
Author(s):  
Annalisa Guerri ◽  
Giovanna Scapin ◽  
Paola Spadon

2014 has been declared by UNESCO the International Year of Crystallography. Following the declaration, many initiatives have flourished with the intent of spreading the science and culture of crystallography, since among the major objectives of the IYCr2014 are increase of public awareness on the science of crystallography, promotion of education and research in all fields of crystallography and fostering of international collaborations. The International School of Crystallography is an internationally recognized meeting that was started in 1974 by Prof. Riva di Sanseverino, with the similar goals of promoting high level crystallographic education, scientific exchanges and collaborations. In 2014 the school celebrates its 40th year of activity. During these forty years, courses have been held on many different topics addressing all aspects of crystallography, from crystal growth theory to practical applications in drug discovery to the use of cutting edge technologies; students and teachers have been brought together in an environment that fostered high level scientific discussions as well as unique interpersonal relationships. Many of the students moved on to become well known personality in the crystallographic community, while retaining collaborations and friendships started during the School. Through these years the School teaching methods have also evolved, taking advantage of the fast technological progress of the past 10 years or so. The School offers both traditional lectures and practical computer-based workshops, to guarantee the students not only a theoretical background, but also hands-on experiences on applied crystallography. The dedication of the organizers and lecturers, the unconditioned support of the local staff, and the unique location of the School have made it a great success and a very popular meeting for generations of crystallographers.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tatiana Duque Martins ◽  
Diéricon Sousa Cordeiro

Background: Face COVID-19 pandemic, a need for accurate information on SARS-CoV-2 virus is urgent and scientific reports have been published on daily basis to enable effective technologies to fight the disease progression. However, at the first moments of Pandemic, no information on the matter was known and technologies to fight the Pandemic were not readily available. However, searches in patent databases, if strategically designed, can offer quick responses to new pandemics. Objective: Aiming to provide existing information in patent documents useful to develop technologies addressing COVID-19, considering the emergency situation the world was facing and the knowledge of COVID-19 available until April, 2020, this work presents an analysis of the main characteristics of the technological information in patent documents worldwide, related to coronaviruses and the severe acute respiratory syndrome (SARS). Method: Regions of concentration of such technologies, the number of available documents and their technological fields are disclosed in three approaches: 1) a wide search, retrieving technologies on SARS or coronaviruses; 2) a targeted search, retrieving documents additionally referring to Angiotensin converting enzyme (ACE2), which is used by SARS-CoV-2 to enter a cell and 3) a punctual search, which retrieved patents disclosing aspects related to SARS-CoV-2 available at that time. Results and Conclusion: Results evidence the high-level technology involved in these developments and a monopoly tendency of such technologies, evidencing that it is possible to find answers to new problems in patent documents.


Author(s):  
Gail Hurley

The right to development is an over-arching, synthesis-based collective right that has found a solid place in the international human rights architecture. Under the UN Declaration on the Right to Development, States have the primary responsibility for establishing national and international conditions favourable to the realisation of the right to development. According to the high-level task force on the implementation of the right to development, this responsibility is at three levels: (a) States acting collectively in global and regional partnerships; (b) States acting individually as they adopt and implement policies that affect persons strictly not within their jurisdiction, and (c) States acting individually as they formulate national development policies and programmes affecting persons within their jurisdiction. The right to development also implies the full realisation of the right of peoples to self-determination. In many contexts, however, onerous debt service obligations and related conditionalities often undermine country ownership of national development strategies, thereby threatening the right to development.


Sign in / Sign up

Export Citation Format

Share Document