scholarly journals WATER POWER GENERATOR FOR PUBLIC ROAD ILLUMINATION LIGHTS OF PADI VILLAGE MOJOKERTO

Author(s):  
Akhmad Solikin ◽  
Rohib Ilma Suktawan

Electricity problems in rural areas more and more electric power is needed. Until now, power plants that use water turbines are environmentally friendly electricity producers, so the potential for energy from the air needs to be utilized to address the demand for electricity. Therefore, the solution to this problem is to use the "Design and Construction of Hydroelectric Generator for Public Street Lighting".  The generator is a source of electric voltage obtained by converting mechanical energy into electrical energy. The generator works based on the principle of electromagnetic induction, which is by rotating a coil in a magnetic field so that the induced GGL (Electric Motion Force) arises. In this thesis, a research is conducted on the Water Turbine Generator in the river in the village area of Padi Gondang Mojokerto as an object of water flow in order to generate electric power to reduce crime in the area in the form of a load object in the form of Public Street Lighting.

Author(s):  
Bima Sakti ◽  
Nur Rani Alham ◽  
Ahmad Nur Fajri ◽  
Ilham Rizal Ma’rif

<em>The need for electricity in Indonesia is very important considering the limited resources and the lack of manpower, making Indonesia desperately need to increase electricity generation. One source of energy that can be converted into electrical energy is tidal barrage using the tidal barrage method. The application of this energy is still very small in Indonesia but there are a number of areas that have the potential to be implemented by the power plant. Tidal power plants that utilize the potential energy contained in the differences in tides and tides of sea water by trapping water in dams and then moving water turbines and when the water turbine is connected to a generator can produce electrical energy. Related to how the output of the generated power can it is known by looking at what height the water level drives the turbine. This type of power plant is environmentally friendly because it does not damage the natural ecosystem and the dam can be used for various activities.</em><em></em>


Author(s):  
Richardo Barry Astro ◽  
Hamsa Doa ◽  
Hendro Hendro

ABSTRAKPenelitian ini bertujuan untuk mengetahui prinsip dasar dan sistem kerja pembangkit listrik tenaga mikrohidro (PLTMH) dari sudut pandang fisika sebagai upaya penyediaan dan pengembangan sumber belajar kontekstual. Penelitian ini dilaksanakan menggunakan metode studi literatur, observasi, dan wawancara. Hasilnya ditemukan bahwa PLTMH memiliki tiga komponen utama yakni air sebagai sumber energi, turbin, dan generator. Skema konversi energi pada PLTMH yang menggunakan head adalah sebagai berikut: 1) energi potensial air dari reservoir diubah menjadi energi kinetik pada pipa pesat, 2) energi kinetik air diubah menjadi energi mekanik oleh turbin air, 3) energi mekanik diubah menjadi energi listrik oleh generator. Turbin air berdasarkan prinsip kerja dibagi atas turbin impuls dan turbin reaksi. Turbin impuls memanfaatkan perubahan momentum air sebelum dan setelah menabrak sudu turbin, sedangkan turbin reaksi memanfaatkan perbedaan tekanan pada permukaan sudu. Generator bekerja berdasarkan prinsip induksi elektromagnetik. Ketika rotor generator yang terkopel pada turbin berputar, kumparan konduktor akan memotong garis medan magnet sehingga timbul tegangan induksi. Kata kunci: pembangkit listrik tenaga mikrohidro; konversi energi; turbin, generator. ABSTRACTThe research aims to determine the fundamental principles and working systems of Microhydro power plants from a physical standpoint as an effort to provide and develop contextual learning resources. This study was conducted using literature, observation and interview methods. The results found that PLTMH had three main components i.e. water as energy source, turbine, and generator. The energy conversion scheme on PLTMH that uses the head is as follows: 1) The potential energy of water from the reservoir is converted into kinetic energy on the rapid pipeline, 2) water kinetic energy converted into mechanical energy by water turbine, 3) changed mechanical energy into electrical energy by generators. The water turbine based on the working principle is divided into impulse turbines and reaction turbines. The impulse turbine utilizes a change in water momentum before and after crashing the turbine's sudu, while the reaction turbine utilizes pressure differences on the surface of the Sudu. The generators work based on electromagnetic induction principles. When the rotor generator is attached to the turbine spinning, the conductor coil will cut off the magnetic field line so that the induction voltage arises. Keywords: microhydro power plant; energy conversion; turbine; generator.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 303
Author(s):  
Lingdi Tang ◽  
Shouqi Yuan ◽  
Yue Tang ◽  
Zhijun Gao

The impulse water turbine is a promising energy conversion device that can be used as mechanical power or a micro hydro generator, and its application can effectively ease the current energy crisis. This paper aims to clarify the mechanism of liquid acting on runner blades, the hydraulic performance, and energy conversion characteristics in the runner domain of an impulse water turbine with a splitter blade by using experimental tests and numerical simulations. The runner was divided into seven areas along the flow direction, and the power variation in the runner domain was analyzed to reflect its energy conversion characteristics. The obtained results indicate that the critical area of the runner for doing the work is in the front half of the blades, while the rear area of the blades does relatively little work and even consumes the mechanical energy of the runner to produce negative work. The high energy area is concentrated in the flow passage facing the nozzle. The energy is gradually evenly distributed from the runner inlet to the runner outlet, and the negative energy caused by flow separation with high probability is gradually reduced. The clarification of the energy conversion performance is of great significance to improve the design of impulse water turbines.


2020 ◽  
Vol 4 (1) ◽  
pp. 44-49
Author(s):  
Syarifah Muthia Putri ◽  
Zulkifli Bahri ◽  
Dina Maizana

Electrical energy has an important role in human life today. Many aspects of human life today rely on electrical energy. National electrical energy defense is an important issue so that Indonesia can become an independent nation in the field of electrical energy sources. Strategies in realizing this issue can be implemented by fostering the interests and talents of upper secondary level students so that the students will explore the field of electricity science. Training on simple electricity generation was conducted for students of Budi Utomo Binjai Private Vocational School so that the students could improve their skills and insight on electricity. The training was carried out by providing an understanding of the role and condition of current electricity, the design of a simple electric power plant, and providing insights on renewable energy. The results of the design during the training are given to the school which can be used as a medium of learning for students in the future. Based on the results of the questionnaire given to students during training it can be seen that 61% of the total number of students participating in training activities can have sufficiently good skills in designing simple electric power plants.


Author(s):  
Yevgen Honcharov ◽  
Nataliya Kriukova ◽  
Vladislav Markov ◽  
Igor Polyakov

The article deals with the actual problems of using the energy released by the human body. The question arises how much energy can the human body generate? Is it possible to use this energy for domestic and industrial needs? In the 18th and 19th centuries, the first scientific works on this topic appeared. It turned out that the charge carriers in the proteins of a living organism are protons and electrons, which, together with the electron-hole conduction system, create a single conductivity inherent only in a living organism. The electrical activity of the brain is assessed by voltage pulses with an amplitude of 500 μV of various frequencies from 0.5 to 55 Hz. It is impossible to receive pulses with such a frequency and such an amplitude from only ionic-type charge carriers. Electrochemical current sources are inertial; therefore, this fact can be direct evidence of the presence of electronic movement of charge carriers in the brain and the nervous system as a whole. It is quite realistic to use the thermal energy of the human body. Currently, the central building of the Stockholm railway station has been turned into a kind of experimental testing ground. Every day about 250 thousand people pass through the station building, who emit up to 25 MW of thermal energy. Most of it in the form of heated air is collected in ventilation and through heat exchangers energy is transferred to heat water in the heating system of another building. According to rough estimates, the efficiency of such a system can save up to 25% of the energy spent on heating the building. Inside a person, electric currents of various frequencies are generated in 7 biological power plants: in the heart, in the brain and in the five sense organs. All the electricity that is generated inside the human body is absorbed by its own tissues. Not a single electron produced inside a living organism leaves the human body, and does not pass into the environment, but is absorbed by the skin. This is the reason for the closure of the human electrical system. The body itself absorbs all the electricity that it previously produced. The energy generated by the human body is divided into mechanical, thermal, and electrical. The thermal energy of the human body can be used most effectively. Mechanical energy can also be used, but with much less efficiency. The electrical energy of the human body at this stage in the development of science and technology is practically impossible to use. Its use is likely to become real in the very distant future


Author(s):  
Ottentri Ottentri ◽  
Hendi Matalata

The need for electrical energy is a necessity that can not be ditawar–tawar anymore for a life worthy of every person in this day. Generally, remote rural areas located in mountainous areas have a large potential of water energy, so that the hydroelectric power plant is one of the energy sources that can be developed. Jambi is an area covered with Batanghari River flows. This research aims to know how the work process of Microhydro power plant.  Components of the essential components of miniature microhydro power plants are reservoirs, rapid pipes, turbines, generators where these components are not loose bias, interrelated to one another. Round of Tubin obtained from the experiment is 400 rpm with water discharge 0.0016 m3/s. The maximum voltage generated by the generator is 18 volts. Voltage generated from the generator to charging the Batrai used inverter of 13.1 volts. The load will remain on even though the main energy source is the generator stop in the same, because the energy of the second is Batrai.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Habibullah ◽  
Rachmad Firdaus

Indonesia currently has a growing need for energy, this will experience an energy crisis condition, dependence on fossil fuels will at least pose a serious threat, therefore there must be alternative energy as a substitute and reserves such as wind energy, water energy, solar energy, and other.  Because Indonesia has abundant water sources, with this my research intends to develop water as a renewable energy source that can be used as a source of energy for hydroelectric power plants or also called water turbines.  The water turbine is an early generator that uses the potential energy of water to become mechanical energy where the water turns the turbine wheel.  This study aims to determine the effect of the number of blades, the effect of the profile, the effect of rotor blade wing tip, Naca 0018, and the resulting energy efficiency.  This research uses experimental research type.


2016 ◽  
Vol 64 (4) ◽  
pp. 957-962
Author(s):  
R. Krok ◽  
M. Pasko

Abstract The research conducted by Prof. Władysław Latek (1916‒1991) has contributed greatly to development in turbogenerator design. The economical transformation taking place in Poland after 1991 initiated the process of revitalization of old power units in electric power stations. For the past 25 years, a team of scientists continuing the work on perfecting the turbogenerator design and design methods has been working in the Faculty of Electrical Engineering of Silesian University of Technology. The work of this team has led to proposing and implementing many modernization projects for turbogenerators operating in Polish power plants, as well as in power plants in European Union and Asian states. Numerous novel and innovative solutions have made it possible to significantly increase turbogenerator power, improve effectiveness of electrical energy production and reliability and safety of operation.


2013 ◽  
Vol 135 (02) ◽  
pp. 30-35
Author(s):  
Lee S. Langston

This article presents a study on new electric power gas turbines and the advent of shale natural gas, which now are upending electrical energy markets. Energy Information Administration (EIA) results show that total electrical production cost for a conventional coal plant would be 9.8 cents/kWh, while a conventional natural gas fueled gas turbine combined cycle plant would be a much lower at 6.6 cents/kWh. Furthermore, EIA estimates that 70% of new US power plants will be fueled by natural gas. Gas turbines are the prime movers for the modern combined cycle power plant. On the natural gas side of the recently upended electrical energy markets, new shale gas production and the continued development of worldwide liquefied natural gas (LNG) facilities provide the other element of synergism. The US natural gas prices are now low enough to compete directly with coal. The study concludes that the natural gas fueled gas turbine will continue to be a growing part of the world’s electric power generation.


Author(s):  
Stephan Klomberg ◽  
Ernst Farnleitner ◽  
Gebhard Kastner ◽  
Oszkár Bíró

Large hydro generators convert the mechanical energy of water turbines into electrical energy. This process is not free of heat losses which have to be dissipated from the machine. For this, different ventilation methods can be applied for an air cooled hydro generator. These methods have not changed very much in the last decades, but there has been a strong enhancement of the calculation and design approaches. State of the art computation methods are thermal and flow networks in combination with 3-dimensional computational fluid dynamics (CFD). The focus of this paper is a CFD analysis of the end winding region as basis for development of correlations between the convective wall heat transfer coefficient (WHTC) and speed and flow rate parameters. These correlations are used as boundary conditions for thermal networks. Furthermore there is also a focus on the influence and sensitivity of the numerical settings on the correlations. This work deals with a reduced numerical model which is designed to calculate a hydro generator fast and accurately by using a steady-state simulation with the mixing plane method. The mixing plane approach is predestined for this kind of design. Considering only one slot section of the end winding bars and stator ducts, the advantages of the stage model can take its full effect. The main advantages are the use of large pitch ratios, periodicities in circumferential direction and the averaging of the fluxes on bands.


Sign in / Sign up

Export Citation Format

Share Document