scholarly journals The effect of groundwater petroleum hydrocarbons contaminants on chlorine removal in Basra city (south of Iraq): An application of mixed technology of permeable reactive barrier

2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Saad Abu-Alhail Arab ◽  
◽  
Rusul Naseer Mohammed ◽  

Petroleum hydrocarbon contaminants in groundwater are among the most impactful environmental problems in oil production in southern Iraq, especially Basra city. Petroleum hydrocarbon contaminants affect related projects surrounding the primary pollution site. Benzene, toluene, and dimethylbenzene are the most toxic pollutants affecting the removal of perchloroethene (Cl2C=CCl2) and trichloroethene (C2HCl3) in groundwater. These pollutants have high solubility in water, leading to their transport over long distances in groundwater and difficult removal. The influence of petroleum hydrocarbons on the chlorine removal of perchloroethene and trichloroethene was studied using a polytetrafluorethylene column packed with zero-valent iron (ZVI). Batch experiments were implemented to investigate the equilibrium supply of mixtures between the aqueous and solid stages in packed column systems. It was designated using the Freundlich isotherm expression, and the result showed that R2 was greater than 0.97 for benzene, toluene, and xylene. The column study noted that the reaction constant was decreased in all columns by approximately 48 % when the pore volume was between 50 and 205, which reflects the dechlorination priority of P-CE over T-CE. These findings indicate that benzene and toluene are more effective for adsorption on the ZVI particle surfaces owing to disparate influences.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
H. Nourmoradi ◽  
Mehdi Khiadani ◽  
M. Nikaeen

Multicomponent adsorption of benzene, toluene, ethylbenzene, and xylene (BTEX) was assessed in aqueous solutions by montmorillonite modified with tetradecyl trimethyl ammonium bromide (TTAB-Mt). Batch experiments were conducted to determine the influences of parameters including loading rates of surfactant, contact time, pH, adsorbate concentration, and temperature on the adsorption efficiency. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were used to determine the adsorbent properties. Results showed that the modification of the adsorbent via the surfactant causes structural changes of the adsorbent. It was found that the optimum adsorption condition achieves with the surfactant loading rate of 200% of the cation exchange capacity (CEC) of the adsorbent for a period of 24 h. The sorption of BTEX by TTAB-Mt was in the order ofB<T<E<X. The experimental data were fitted by many kinetic and isotherm models. The results also showed that the pseudo-second-order kinetic model and Freundlich isotherm model could, respectively, be fitted to the experimental data better than other available kinetic and isotherm models. The thermodynamic study indicated that the sorption of BTEX with TTAB-Mt was achieved spontaneously and the adsorption process was endothermic as well as physical in nature. The regeneration results of the adsorbent also showed that the adsorption capacity of adsorbent after one use was 51% to 70% of original TTAB-Mt.


2019 ◽  
Vol 16 (31) ◽  
pp. 431-439
Author(s):  
Helilma de Andréa PINHEIRO ◽  
Ana Paula Mota FERREIRA ◽  
Ismael Carlos Braga ALVES ◽  
Antônio Fernandes SANTOS JÚNIOR ◽  
Raquel Bezerra dos Santos SAWCZUK ◽  
...  

The contamination of water and soil by petroleum hydrocarbons is reported quite frequently, mainly due to accidents involving transport and storage of fuels. Among the most toxic compounds the most volatile benzene, toluene, ethylbenzene and xylene (BTEX). Residues of these compounds can cause serious environmental and public health troubles. Thus, more sensitive, selective and low-cost techniques, focused on the analysis and monitoring of these contaminants are being developed in order to establish operational control and to comply with local laws, but the intellectual property of such technologies is still unknown. The present study shows the panorama about patents, thesis and dissertations which have been already published on this theme. Together, the United States and China hold the largest number of patents, and most of thesis/dissertations describe methodologies for BTEX detection in water, although numerous environmental problems caused by oils in the soil had been reported. Also, the methods based on chromatographic techniques stand out in relation to the other techniques. It was possible to verify important advances in the field of sensors, especially the electrochemical ones, in order to solve the analytical gaps.


Author(s):  
Williams, Janet Olufunmilayo ◽  
Aleruchi Owhonka

This study investigated the potential of Aspergillus sydowii and Fusarium lichenicola as mixed cultures in the biodegradation of Total Petroleum Hydrocarbons TPHs in oilfield wastewater. Oilfield wastewater was collected from an onshore oil producing platform and biodegradation of total petroleum hydrocarbons was investigated using standard methods. Fungi were isolated from oilfield wastewater contaminated soils obtained from the vicinity of the oil producing platform. Experimental control set-up and treatment with mixed culture of fungal isolates were periodically analyzed on days 7 and 21 intervals for total petroleum hydrocarbon degradation using Gas Chromatography (GC). The total amount of TPHs on day 1 recorded 381. 871 mg/l.  The amount of TPHs on days 7 and 21 in the mixed culture of fungi was 108.975 mg/l and 21.105 mg/l respectively while TPHs in control was 342.891 mg/l and 240.749 mg/l respectively. There was a significant difference between the mixed culture and the control on days 7 and 21 at p≤0.05. The results therefore revealed actual and significant reduction of TPHs in the mixed culture. In addition, there was clearance of n-alkanes by the mixed culture. This suggests that fungi have great potentials in biodegradation of TPHs and in remediation of TPH contaminated environments.


1987 ◽  
Vol 1987 (1) ◽  
pp. 247-253
Author(s):  
Salah M. Al-Mazidi ◽  
Omar Samhan

ABSTRACT Since the discovery of oil in Kuwait, most oil-related activities have been located along the coastline 50 km south of Kuwait City. Other related industrial activities have been developed in this area apart from oil and petroleum products export in order to diversify the national sources of income. For these reasons, the potential for large oil spills in Kuwait's marine environment is highest along the south coast, where oil refineries and exporting facilities are located. An average of 219 barrels of oil were spilled annually between 1979 and 1985, and 2,100 gallons of dispersants were used in cleanup operations. The majority of incidents involved less than 5 barrels of oil and 500 gallons of dispersants. Incidents involving more than 100 barrels of oil and 5,000 gallons of dispersants were confined to the Sea Island and Mina Al-Ahmadi North and South Piers. This distribution undoubtedly affects the concentration of petroleum residues in various components of the marine environment, resulting in an increase in tar ball density along this coast, reaching a maximum at Ras Az-Zor, and significantly higher levels of vanadium and petroleum hydrocarbons in sediments and oysters collected south of Mina Al-Ahmadi. The objective of this paper is to report on the number, volume, and frequency distribution of oil spill incidents in Kuwait and the usage of dispersants in cleanup operations. Vanadium and petroleum hydrocarbon concentrations also are described as is the sensitivity of the southern coastal environment to oil spills. Recommendations have been made on how to conduct cleanup operations for any future oil spill incidents along the southern shoreline of Kuwait.


2018 ◽  
Vol 2 (2) ◽  
pp. 35
Author(s):  
Prasetyo Handrianto

Exploitation and exploration activities will produce sewage sludge and crude oil spills that cause pollution to the environment and upgrading to the environment, biology and soil chemistry. Monitoring of oil pollution conditions on the soil can be done by detection of all hydrocarbon components, or what is called the total petroleum hydrocarbon (TPH). According to its components, this total petroleum hydrocarbon (TPH) can be classified into 3 points, aliphatic, alicyclic, and aromatic. One of the biological efforts that can be used to overcome petroleum pollution is by using bioremediation technology. There are several methods in bioremediation, one of which is the biostimulation method, where the growth of the original hydrocarbon decomposers is stimulated by adding nutrients, oxygen, pH optimization and temperature. Hydrocarbonoclastic microorganisms have characteristic not possessed by other microorganisms, namely their ability to excrete hydroxylase enzymes, which are hydrocarbon oxidizing enzymes, so that these bacteria can degrade petroleum hydrocarbons. Biodegradation can be formed if there is a structural transformation so that cahnges in molecular integrity occur. This process is a series of enzymatic or biochemical reaction that require ideal environmental conditions with the growth and proliferation of microorganisms. Something that need to be known before remediation are pollutants (organic or inorganic), degraded/ not, dangerous/ not, how many pollutants pollute the soil, the ratio of carbon (C), Nitrogen (N), and phophorus (P), soil type, soil conditions (wet dry), and how long pollutants have been deposited in these locations


2013 ◽  
Vol 295-298 ◽  
pp. 159-163 ◽  
Author(s):  
Zhen Min Ma ◽  
Yun Yun Luo ◽  
Yun Zhi Fang ◽  
Yu Song Hou

The research of hydrogeochemical mechanism of petroleum hydrocarbon in karst fissure groundwater system is important to predict the trend of petroleum hydrocarbons and the change of groundwater environment. We take the karst fissure water system as the research object, where there is a refinery. The variation of SO42-, HCO3-, NO3-, NO2-, HS- can be used as a hydrogeochemical sign of petroleum hydrocarbon pollution by analyzing the change of water quality parameters before and after karst fissure water contaminated by petroleum hydrocarbon. It has been also analyzed systematically that hydrogeochemical mechanism including desulfurization, denigration and ion exchange happen during the pollution process in the karst fissure water system. It is pointed out that the human activities have a great impact on the groundwater and changes of environment.


2020 ◽  
Vol 2 (10) ◽  
pp. 5-10
Author(s):  
Ishita Agrawal

It is widely known that petroleum hydrocarbons constitute one of the most hazardous pollutants that affect human and environmental health. The ongoing research on bioremediation with petroleum hydrocarbon-degrading bacteria has shown tremendous promise of the technology due to its advantages of high efficiency and eco-friendly nature. To this end, studies have been carried out to identify a large amount of bacterial species with petroleum hydrocarbon-degrading ability for applications in bioremediation. Here, we present a brief perspective of some of the notable advances in oil degrading bacteria and the remedial actions for decontamination of water and soil along with recovering the spilled materials at oil sites.


1993 ◽  
Vol 76 (3) ◽  
pp. 555-564 ◽  
Author(s):  
Viorica Lopez-Avila ◽  
Richard Young ◽  
Robert Kim ◽  
Werner F Beckert ◽  
◽  
...  

Abstract A collaborative study was conducted, with 14 laboratories participating, to determine the method accuracy and precision of the proposed U.S. Environmental Protection Agency Methods 3560 and 8440. These methods involve the extraction of petroleum hydrocarbons from solid matrixes with supercritical carbon dioxide at 340 atm and 80°C for 30 min (dynamic), collection of the extracted materials in tetrachloroethene (Method 3560), and analysis of the extracts by infrared (IR) spectrometry (Method 8440). The study design was based on the AOAC blind replicate design with balanced replicates. The study samples consisted of 4 solid matrixes that had petroleum hydrocarbon contents ranging from 614 to 32 600 mg/kg. Each of the 4 matrixes was extracted in triplicate, and the extracts were analyzed with 2 different IR spectrometers. In addition, each of the participating laboratories extracted a sample of unspiked clay soil, the same clay soil spiked with corn oil and reference oil at 1000 mg/kg each, and the same clay soil wetted to 30% water content and spiked with motor oil at 10 000 mg/kg (the latter 3 samples were extracted only once). Results indicated that the overall method accuracy for concentrations ranging from 614 to 32 600 mg/kg was 82.9%; the mean recoveries of petroleum hydrocarbons for each of the 4 solid matrixes ranged from 77.9 to 107% for analyses performed with the Perkin-Elmer Fourier transform IR spectrometer and from 75.9 to 101% for analyses performed with the Buck-Scientific IR spectrometer; the differences between the 2 instruments on a sample-bysample basis were less than 17% for the total petroleum hydrocarbon determinations. The interiaboratory method precisions (RSDR) appeared to be matrix-dependent and ranged from 17.3 to 45.4% for analyses performed with the Perkin- Elmer Fourier transform IR spectrometer and from 16.7 to 47.9% for the Buck-Scientific IR spectrometer. The intralaboratory method precisions (RSDr) appeared to be less matrix-dependent and ranged from 11.5 to 17.0% for analyses performed with the Perkin-Elmer FTIR spectrometer and from 11.1 to 18.2% for the Buck-Scientific IR spectrometer. Method accuracy and precision data are also presented for the 5 laboratories that used Isco supercritical fluid extraction systems and for the 7 laboratories that used vessels with volumes of 3.5 mL or less with different supercritical fluid extraction systems.


2020 ◽  
Vol 26 (5) ◽  
pp. 200384-0
Author(s):  
Jianbo Liu ◽  
Liming Xu ◽  
Feifei Zhu ◽  
Shouhao Jia

It has been proven that surfactants used in the remediation of petroleum hydrocarbon contaminated soil have great application potential. In this study, the effects of five surfactants (SDBS, Tween80, Tween60, rhamnolipid and TRS-1) on leaching of petroleum hydrocarbons from soil were investigated through orthogonal experiments, and petroleum hydrocarbon components were analyzed by GC/MS. The effects of surfactants on the degradation of petroleum hydrocarbon were analyzed by the changes of microbial growth curve and surface hydrophobicity. The results showed that surfactant type, temperature and surfactant concentration had significant effects on the removal rate of petroleum hydrocarbon. Tween80, rhamnolipid and TRS-1 have good bio-friendliness and a high removal rate of petroleum hydrocarbons (up to 65%), suitable for the restoration of the soil used in the experiment And Surfactants exhibited a higher removal rate for small molecules and petroleum hydrocarbons with odd carbon atoms. Surfactants have a certain modification effect on the surface of relatively hydrophilic bacteria under the initial conditions, making their surface properties develop in the direction of enhanced hydrophobicity, and the hydrophobicity has increased from less than 20% to about 40%.


Sign in / Sign up

Export Citation Format

Share Document