Effects of Acupuncture in Prevention and Treatment of Diseases by Regulating Chemokines

2021 ◽  
Vol 46 (2) ◽  
pp. 135-146
Author(s):  
Tian-tian Zhao ◽  
Fang-fang Mou ◽  
Han Li ◽  
Shui-jin Shao ◽  
Hai-dong Guo

Chemokines are involved in multiple pathological processes mainly associated with inflammatory responses by stimulating cell migration. The article reviews changes in the expression of several important chemokines after acupuncture treatment in the last five years, elucidates the mechanism of action of acupuncture in the treatment of various diseases from the perspective of chemokines, and provides reference for promoting the application of acupuncture and enhancing its treatment efficacy.

Impact ◽  
2021 ◽  
Vol 2021 (6) ◽  
pp. 24-25
Author(s):  
Seisuke Mimori

The two strands of treatment available for coronary artery disease and associated pathologies are pharmaceutical and physical. However, these treatments are typically only available too late to help tackle the early underlying processes. Better understanding of the underlying processes is key to the development of preventative solutions. One of the key processes understanding coronary problems is atherosclerosis, which is when arteries lose elasticity. Associate Professor Seisuke Mimori, Department of Clinical Medicine, Chiba Institute of Science, Japan, is examining the underlying biochemistry of atherosclerosis. Professor Tetsuto Kanzaki has succeeded in cloning a protein called LTBP-1 and, under his direction, Seisuke has created a mutant of the protein and is analysing it. He intends to produce variants of LTBP-1 in order to investigate the function of various domains of the protein. This will involve firstly producing and isolating the protein and its variants in sufficient quantities. Then, he will test cell migration rates through an assay that he and the team have designed. This will enable the researchers to clarify exactly how LTBP-1 functions. In the future, Seisuke and the team will investigate the exact mechanism of action of the domains involved and explore the impact of LTBP-1 on the relevant organs and cells.


2020 ◽  
Vol 21 (3) ◽  
pp. 741 ◽  
Author(s):  
Anamaria Balić ◽  
Domagoj Vlašić ◽  
Kristina Žužul ◽  
Branka Marinović ◽  
Zrinka Bukvić Mokos

Omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) are nowadays desirable components of oils with special dietary and functional properties. Their therapeutic and health-promoting effects have already been established in various chronic inflammatory and autoimmune diseases through various mechanisms, including modifications in cell membrane lipid composition, gene expression, cellular metabolism, and signal transduction. The application of ω-3 and ω-6 PUFAs in most common skin diseases has been examined in numerous studies, but their results and conclusions were mostly opposing and inconclusive. It seems that combined ω-6, gamma-linolenic acid (GLA), and ω-3 long-chain PUFAs supplementation exhibits the highest potential in diminishing inflammatory processes, which could be beneficial for the management of inflammatory skin diseases, such as atopic dermatitis, psoriasis, and acne. Due to significant population and individually-based genetic variations that impact PUFAs metabolism and associated metabolites, gene expression, and subsequent inflammatory responses, at this point, we could not recommend strict dietary and supplementation strategies for disease prevention and treatment that will be appropriate for all. Well-balanced nutrition and additional anti-inflammatory PUFA-based supplementation should be encouraged in a targeted manner for individuals in need to provide better management of skin diseases but, most importantly, to maintain and improve overall skin health.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Ke Yang ◽  
Xing Liu ◽  
Wanwen Lin ◽  
Yuanyuan Zhang ◽  
Chaoquan Peng

Objectives. MicroRNA-125b (miR-125b) has been recognized as one of the key regulators of the inflammatory responses in cardiovascular diseases recently. This study sought to dissect the role of miR-125b in modulating the function of endothelial progenitor cells (EPCs) in the inflammatory environment of ischemic hearts. Methods. EPCs were cultured and transfected with miR-125b mimic and negative control mimic. Cell migration and adhesion assays were performed after tumor necrosis factor-α (TNF-α) treatment to determine EPC function. Cell apoptosis was analyzed by flow cytometry. The activation of the NF-κB pathway was measured by western blotting. EPC-mediated neovascularization in vivo was studied by using a myocardial infarction model. Results. miR-125b-overexpressed EPCs displayed improved cell migration, adhesion abilities, and reduced cell apoptosis compared with those of the NC group after TNF-α treatment. miR-125b overexpression in EPCs ameliorated TNF-α-induced activation of the NF-κB pathway. Mice transplanted with miR-125b-overexpressed EPCs showed improved cardiac function recovery and capillary vessel density than the ones transplanted with NC EPCs. Conclusions. miR-125b protects EPCs against TNF-α-induced inflammation and cell apoptosis by attenuating the activation of NF-κB pathway and consequently improves the cardiac function recovery and EPC-mediated neovascularization in the ischemic hearts.


2018 ◽  
Vol 6 (42) ◽  
pp. 6767-6780 ◽  
Author(s):  
Arun Prabhu Rameshbabu ◽  
Sayanti Datta ◽  
Kamakshi Bankoti ◽  
Elavarasan Subramani ◽  
Koel Chaudhury ◽  
...  

Impaired wound healing is primarily associated with inadequate angiogenesis, repressed cell migration, deficient synthesis of extracellular matrix (ECM) component/growth factors, and altered inflammatory responses in the wound bed environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Shoubi Wang ◽  
Xiaoran Wang ◽  
Yaqi Cheng ◽  
Weijie Ouyang ◽  
Xuan Sang ◽  
...  

Age-related macular degeneration (AMD) is a blinding disease caused by multiple factors and is the primary cause of vision loss in the elderly. The morbidity of AMD increases every year. Currently, there is no effective treatment option for AMD. Intravitreal injection of antivascular endothelial growth factor (anti-VEGF) is currently the most widely used therapy, but it only aims at neovascularization, which is an intermediate pathological phenomenon of wet AMD, not at the etiological treatment. Anti-VEGF therapy can only temporarily delay the degeneration process of wet AMD, and AMD is easy to relapse after drug withdrawal. Therefore, it is urgent to deepen our understanding of the pathophysiological processes underlying AMD and to identify integrated or new strategies for AMD prevention and treatment. Recent studies have found that autophagy dysfunction in retinal pigment epithelial (RPE) cells, cellular senescence, and abnormal immune-inflammatory responses play key roles in the pathogenesis of AMD. For many age-related diseases, the main focus is currently the clearing of senescent cells (SNCs) as an antiaging treatment, thereby delaying diseases. However, in AMD, there is no relevant antiaging application. This review will discuss the pathogenesis of AMD and how interactions among RPE autophagy dysfunction, cellular senescence, and abnormal immune-inflammatory responses are involved in AMD, and it will summarize the three antiaging strategies that have been developed, with the aim of providing important information for the integrated prevention and treatment of AMD and laying the ground work for the application of antiaging strategies in AMD treatment.


Author(s):  
Aymen Shatnawi ◽  
Alison Shafer ◽  
Hytham Ahmed ◽  
Fawzy Elbarbry

Thirty six percent of people in USA and Canada regularly use complementary and alternative medicine (CAM) for the prevention and treatment of different diseases, including hypertension. Generally, majority of the hypertensive patients do not disclose the use of such remedies, and also health care providers do not usually ask their hypertensive patients if they use CAM. The widespread consumption of CAM in hypertension requires clear understanding of their underlying mechanism of action, efficacy and safety. This chapter will provide a comprehensive list of CAM commonly used by Americans for the prevention and treatment of hypertension as well as their postulated mechanism of action. Modulation of drug metabolizing enzymes and their safety will also be covered along with the clinical consequences, i.e. drug-herb or herb-disease interactions. patients and healthcare providers should also be careful with using CAM therapies, because not only is there minimal evidence that several CAM products work to treat hypertension, but their safety hasn't been well-established.


Author(s):  
Kiran Dahiya ◽  
Rakesh Dhankhar

Nutraceuticals are increasingly becoming popular for prevention and treatment of cancer. Association of adverse effects with standard treatment modalities of cancer has led to consideration of safer approaches. Nutraceuticals may help in prevention of cancer as well as in treatment and avoidance of side effects associated with chemo-radiation. The active components of nutraceuticals are known as phytochemicals. Many mechanisms have been put forward for the actions of these phytochemicals but an exact mechanism for a well defined role of a particular phytochemical in a specific type of cancer is yet to be elucidated. Thus, nutraceutical industry has emerged as a research oriented sector. It is important for the healthcare professionals to understand the categories, research developments, mechanism of action and areas of concern in the field of nutraceuticals.


2012 ◽  
Vol 25 (1) ◽  
pp. 31-38 ◽  
Author(s):  
S. Tetè ◽  
D. Tripodi ◽  
M. Rosati ◽  
F. Conti ◽  
G. Maccauro ◽  
...  

Cytokines such as interleukins, chemokines and interferons are immunomodulating and inflammatory agents, characterized by considerable redundancy, in that many cytokines appear to share similar functions. Virtually all nucleated cells, but especially epithelial cells and macrophages, are potent producers of cytokines. The objective of this study is to review the detailed mechanism of action and the biological profiles of IL-37, the newest anti-inflammatory cytokine. This review focuses on IL-37, a key cytokine in regulating inflammatory responses, mainly by inhibiting the expression, production and function of proinflammatory cytokines: IL-1 family pro-inflammatory effects are markedly suppressed by IL-37.


Sign in / Sign up

Export Citation Format

Share Document