Tribological Behavior of a Thermoplastic Material Under the Action of a Conic Penetrator in Sliding Movement

2021 ◽  
Vol 58 (1) ◽  
pp. 27-33
Author(s):  
Ivona Camelia Petre ◽  
Elena Valentina Stoian ◽  
Maria Cristiana Enescu

Knowing how to deform the Turcite thermoplastic material under the action of conical penetrators is a means of obtaining information on the processing of the counterpart (made from a metal material with higher hardness) with which it comes into contact.The paper aims to theoretically determine the depth of penetration of the thermoplastic material under the action of some conical penetrators and to establish the coefficient of static and kinetic friction under the action of these penetrators. The proposed model will be validated experimentally on a tribological stand made for this purpose.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fei Gao ◽  
Zhen Wang ◽  
Zhu Wen ◽  
Yuguo Ji

The P-α equation of state (EOS) and a nonlinear yield criterion are utilized to characterize the dynamic constitutive behavior of concrete targets subjected to projectile normal penetration. A dynamic cavity expansion model considering the compressibility and nonlinear constitutive relations for concrete material is developed. Then, a theoretical model to calculate the depth of penetration (DOP) for rigid projectile is established. Furthermore, the proposed model is validated based on the available test data as well as the calculation results by the linear compressible EOS and linear yield criterion. This study shows that the proposed model derived using the P-α EOS and nonlinear yield criterion can effectively reflect the plastic mechanical properties of concrete and is also suitable for predicting the DOP of concrete targets. In addition, the influence law of concrete constitutive parameters such as the cohesion strength, shear strength, internal friction coefficient, and elastic limit pressure on the DOP is revealed.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 148
Author(s):  
Julio César Salgado-Ramírez ◽  
Jean Marie Vianney Kinani ◽  
Eduardo Antonio Cendejas-Castro ◽  
Alberto Jorge Rosales-Silva ◽  
Eduardo Ramos-Díaz ◽  
...  

Associative memories in min and max algebra are of great interest for pattern recognition. One property of these is that they are one-shot, that is, in an attempt they converge to the solution without having to iterate. These memories have proven to be very efficient, but they manifest some weakness with mixed noise. If an appropriate kernel is not used, that is, a subset of the pattern to be recalled that is not affected by noise, memories fail noticeably. A possible problem for building kernels with sufficient conditions, using binary and gray-scale images, is not knowing how the noise is registered in these images. A solution to this problem is presented by analyzing the behavior of the acquisition noise. What is new about this analysis is that, noise can be mapped to a distance obtained by a distance transform. Furthermore, this analysis provides the basis for a new model of min heteroassociative memory that is robust to the acquisition/mixed noise. The proposed model is novel because min associative memories are typically inoperative to mixed noise. The new model of heteroassocitative memory obtains very interesting results with this type of noise.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5372
Author(s):  
Zhao Li ◽  
Xiangzhao Xu

Experimental and theoretical investigations on the failure behaviors of projectile during high-speed impact into concrete slabs were performed in this study. The ogive-nose projectiles after impact experiments were recovered and their microstructures were observed by scanning electron microscope and metallographic microscope. Mass abrasion and nose blunting are the typical failure models of steel projectile. Furthermore, thermal melting and cutting are the two main failure mechanisms. Based on the microscopic experimental results, a theoretical model of ogive-nose projectile subjected to impact loading considering the melting and cutting mechanisms was proposed. A modified cap model is introduced for describing the failure behavior of concrete targets, and then the dynamic cavity expansion theory is used to determine the resistance of projectiles during penetration. Besides, combining with the two-dimensional heat conduction equation and abrasive wear theory, the two main abrasion mechanisms of melting and cutting are included in the proposed model, which breaks through the framework of previous abrasion models with single abrasion mechanism. The predicted results of the present abrasion model are in good agreement with the experimental data, which indicates that the proposed model can effectively predict the failure behavior and penetration performance parameters of high-speed projectiles during penetration into concrete targets, such as mass loss, nose blunting, and depth of penetration.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
D.P. Bazett-Jones ◽  
F.P. Ottensmeyer

It has been shown for some time that it is possible to obtain images of small unstained proteins, with a resolution of approximately 5Å using dark field electron microscopy (1,2). Applying this technique, we have observed a uniformity in size and shape of the 2-dimensional images of pure specimens of fish protamines (salmon, herring (clupeine, Y-l) and rainbow trout (Salmo irideus)). On the basis of these images, a model for the 3-dimensional structure of the fish protamines has been proposed (2).The known amino acid sequences of fish protamines show stretches of positively charged arginines, separated by regions of neutral amino acids (3). The proposed model for protamine structure (2) consists of an irregular, right-handed helix with the segments of adjacent arginines forming the loops of the coil.


2010 ◽  
Vol 15 (2) ◽  
pp. 121-131 ◽  
Author(s):  
Remus Ilies ◽  
Timothy A. Judge ◽  
David T. Wagner

This paper focuses on explaining how individuals set goals on multiple performance episodes, in the context of performance feedback comparing their performance on each episode with their respective goal. The proposed model was tested through a longitudinal study of 493 university students’ actual goals and performance on business school exams. Results of a structural equation model supported the proposed conceptual model in which self-efficacy and emotional reactions to feedback mediate the relationship between feedback and subsequent goals. In addition, as expected, participants’ standing on a dispositional measure of behavioral inhibition influenced the strength of their emotional reactions to negative feedback.


2020 ◽  
Vol 39 (3) ◽  
pp. 4041-4058
Author(s):  
Fang Liu ◽  
Xu Tan ◽  
Hui Yang ◽  
Hui Zhao

Intuitionistic fuzzy preference relations (IFPRs) have the natural ability to reflect the positive, the negative and the non-determinative judgements of decision makers. A decision making model is proposed by considering the inherent property of IFPRs in this study, where the main novelty comes with the introduction of the concept of additive approximate consistency. First, the consistency definitions of IFPRs are reviewed and the underlying ideas are analyzed. Second, by considering the allocation of the non-determinacy degree of decision makers’ opinions, the novel concept of approximate consistency for IFPRs is proposed. Then the additive approximate consistency of IFPRs is defined and the properties are studied. Third, the priorities of alternatives are derived from IFPRs with additive approximate consistency by considering the effects of the permutations of alternatives and the allocation of the non-determinacy degree. The rankings of alternatives based on real, interval and intuitionistic fuzzy weights are investigated, respectively. Finally, some comparisons are reported by carrying out numerical examples to show the novelty and advantage of the proposed model. It is found that the proposed model can offer various decision schemes due to the allocation of the non-determinacy degree of IFPRs.


Author(s):  
Honghai LI ◽  
Jun CAI

The transformation of China's design innovation industry has highlighted the importance of design research. The design research process in practice can be regarded as the process of knowledge production. The design 3.0 mode based on knowledge production MODE2 has been shown in the Chinese design innovation industry. On this cognition, this paper establishes a map with two dimensions of how knowledge integration occurs in practice based design research, which are the design knowledge transfer and contextual transformation of design knowledge. We use this map to carry out the analysis of design research cases. Through the analysis, we define four typical practice based design research models from the viewpoint of knowledge integration. This method and the proposed model can provide a theoretical basis and a path for better management design research projects.


Sign in / Sign up

Export Citation Format

Share Document