scholarly journals Research Concerning the Optimization of the Mechanism of the Conventional Sucker Rod Pumping Units

2019 ◽  
Vol 70 (5) ◽  
pp. 1795-1799
Author(s):  
Georgeta Toma

Finding optimal solutions to design the mechanism of the conventional sucker rod pumping units is always present due to many problems that involve. The study in this case involves both the cinematic and dynamic analysis of the mechanism of the conventional pumping units, making sure that the optimization solution maintain unchanged certain operating parameters of the pumping equipment such as the stroke of the sucker rod column. In the paper is presented a method of determining the optimal dimensions of the structural elements of the mechanism of the conventional pumping units in order to reduce the maximum values of the connection forces in the bearings in the conditions of maintaining unchanged the stroke of the sucker rod column. The simulations have been performed in the case of a C-640D-305-120 pumping unit.

2021 ◽  
Vol 2(73) (2) ◽  
pp. 33-39
Author(s):  
Georgeta Toma ◽  

In the paper is presented a method for obtaining the variation during a cinematic cycle of the motor torque at the crankshaft in the case of the conventional sucker rod pumping units. The calculation method has been transposed into a computer program which allows establishing the influence of different constructive and operating parameters of the pumping units on the variation of the motor torque at the crankshaft. Finally, a series of results of the simulations performed in the case of a C-640D-305-120 pumping unit are presented.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052004
Author(s):  
S V Svetlakova ◽  
A N Krasnov ◽  
M Yu Prakhova

Abstract The problem of measuring the flow rate of wells with low production rates is relevant for many oil fields. Conventional flow meters are not suitable for such cases, and installing an additional flow meter for each well is impractical. At the same time, wells with sucker-rod pumping units (the majority of wells) are outfitted with dynamographs for continuous diagnostics of the pumping equipment state. Dynamograms allow determining the theoretical flow rate of the well easily, however, a mathematical model is required to estimate the actual flow rate. For the correction of flow rate obtained from dynamograms, the authors of this study propose using models based on regression equations that link the calculated valueswith the measurements made by a reference instrument. The results of the experiments have confirmed the eligibility of this approach.


Author(s):  
Guixi Li ◽  
Rujian Ma ◽  
Jungang Wang

The dynamic performance of hydraulic beam pumping units was analyzed in this paper by using the theory of mechanical vibrations. The house-head movement of the pumping unit is mainly uniform, except the alternation period of upper- and down-strokes. Under the action of the house-head movement, the vibration of the system, the sucker-rod and, furthermore, the dynamic stress will be induced. The results indicate that the movement of the downhole pump includes two parts. One is the movement following the horse-head. The other is the dynamic response excited by the support movement. When the parameters of the system are selected reasonably, over-stroke of the pump will appear. This is because the movement of the hydraulic piston obeys a particular law. The maximum displacement increases, and the maximum dynamic stress decreases with depth. The changing of maximum dynamic stress with depth obeys quadratic law.


2019 ◽  
Vol 298 ◽  
pp. 00137
Author(s):  
Georgy Milovzorov ◽  
Aleksei Ilyin ◽  
Pavel Shirobokov

Despite of the increased share of oil wells equipped with submersible electrical centrifugal pumps, a considerable part of them is equipped and operated with sucker-rod pumping units. When operating wells with sucker-rod pumping units, different plunger pumps are used. The rod string is operated in severe environment due to long contact with highly corrosive well products and time-variant loads. Taking into account all acting loads, the diagnostics of the condition of sucker-rod pumping units is a difficult task. At the majority of oil fields in Russia, the operation of wells equipped with sucker-rod pumping units is controlled by portable and stationary dynamographs of various models. Moreover, dynamographs are used, as a rule, only to obtain images of dependence of the force on the polished piston rod upon its stroke. Based on dynamograms it is possible to find the well flow rate, pump capacity, force on the polished piston rod, etc. But one of the main problems to be solved with the help of dynamometry is the forecasting of down-hole equipment condition in the process of further operation. In this paper we overview the methods to diagnose the condition of sucker-rod pumping units based on dynamograms. The aim of the work is to develop the mathematical model to forecast the failures of down-hole pumping equipment on the results of dynamometry to automatize the control process of the unit operation. The research tasks are to analyze the existing methods for diagnosing the condition of sucker-rod pumping units, and to develop the mathematical model for forecasting the failure of the valve unit leakage. As a result, the method for forecasting the increased failure on the example of the fluid leakage in the pump injection unit is proposed. The permissible boundaries of the change in the relative force on the polished piston rod are drawn up. As a result, the failure increase is forecasted based on the frequency of the relative force on the polished piston rod getting within the interval obtained.


Author(s):  
V. A. Manakhov ◽  
A. N. Tsvetkov

TARGET. The purpose of this work is to develop a method for diagnostics of equipment of sucker rod pumping units (SRPU) during operation according to the parameters of the wattmetrogram. A wattmetering module is used as a measuring element, the developed software in the MatLab software package serves as a tool for processing vibration signals. The technical condition of the sucker rod pumping unit is analyzed by the parameters of the wattmetrogram and the amplitude spectra of the object under study, formed using the fast Fourier transform procedure in the MatLab software environment.METHODS. The wattmetering method allows you to control the sucker rod-pumping unit during its operation under voltage. This control method is highly accurate, sensitive to developing defects, and allows the use of computer technologies for signal processing and analysis.RESULTS. The wattmetering method is fully disclosed. The construction of the spectrum is considered. The relationship between the wattmetrogram and the dynamogram has been established. The removal and evaluation of experimental data from the operating sucker-rod pumping unit during its operation was carried out. A wattmetrogram and a dynamogram were built, a spectrum was also built, which showed the presence of defects in this installation.CONCLUSION. This method of wattmetering with the MatLab software allows you to monitor the technical condition of the sucker rod pumping unit according to the amplitude-frequency characteristics of the wattmetrogram parameters.


2019 ◽  
Vol 70 (4) ◽  
pp. 1223-1227
Author(s):  
Dorin Badoiu

The analysis of the conventional sucker rod pumping units and especially their dynamics is laborious and requires a large amount of calculations due to the constructive complexity of the component structural elements. Therefore, expressing in a simplified but sufficiently precise form the various cinematic and dynamic parameters that characterize the proper functioning of the pumping units is extremely useful in analyzing the possibilities of their functional optimization. In the paper are presented a series of results concerning the expressing of some cinematic and dynamic parameters using polynomial functions in the case of the mechanism of a C-640D-305-120 pumping unit. The simulations have been performed with a computer program developed by the author using Maple programming environment. Experimental records processing was performed with the program Total Well Management.


Author(s):  
V. Ya. Grudz ◽  
Ya. V. Grudz ◽  
V. V. Bevz

The kinematic schemes of the installations of oil well equipment for oil production are considered, the estimation of their efficiency is given, the efforts on the structural elements in the process of its operation are analyzed. On the basis of the analysis of designs of hydraulic drive rod pump units it is shown that any hydraulic drive rod unit can be considered as a set of several functional blocks, of which the unit of the body organ that carries out the movement of the column of the rod, the block of the hydraulic drive that converts the energy of the energy units is mandatory. drive into the fluid flow of the working fluid and the block system of reversing the flow of the working fluid. It is proved that all installations that use for oil extraction have significant disadvantages, which in this design can not be eliminated, because improvement of one defect leads to deterioration of its other parameters. As a prototype in the design of a new installation, the most advanced designs were taken, and in order to create a new design a complete analysis of each of them was made, a design was selected that has improved characteristics in comparison with the others and will serve to take into account and eliminate the defects that must be taken into account in the design. The technical task of creating a new design is to increase the reliability of the drive, simplify the system of load compensation, eliminate leakage of working fluid and increase the efficiency of the deep-pumping equipment. The analysis of the workflow of the installation made it possible to evaluate the efficiency of operation, which is important in the design of the equipment, in order to improve the reliability of its operation in specific conditions and to reduce energy consumption, ie increase the efficiency of the system.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (9) ◽  
pp. 571-578
Author(s):  
Beyali Ahmedov ◽  
◽  
Anar Hajiyev ◽  
Vugar Mustafayev ◽  
◽  
...  

The article presents the results of experimental studies to assess the loading and balancing of a new constructive solution of beamless sucker-rod pumping units. It is noted that the key factor that has the most significant effect on the mean time between failures (MTBF) is the right balancing of the pumping unit. The main purpose of the balancing device is the accumulation of potential energy during the downstroke and its release during the upstroke of the rod. It has been proved that the proposed additional balancing system (movable counterweight) which helps to reduce the uneven load on the electric motor and the power consumption of the pumping unit will also increase the efficiency of the beamless sucker-rod pumping unit. It was found that losses in sucker-rod pumps depend on the degree of balance of the counterweights. If the unbalance coefficient of the equipment is in the range from –5 to +5%, then the power loss due to unbalance can be ignored. In the current article, the authors propose a technique that allows to determine the energy characteristics of the electric drive of the pumping unit under conditions of a cyclically changing load and insufficient balance. It was revealed that when the balancer head passes from the upstroke to the downstroke and vice versa, there are sections with a negative value of the torque, which is explained by the influence of the inertial forces of the moving masses. This leads to shocks in the gearing of the reducer at the extreme positions of the cranks, increased wear and possibly to breakage of the teeth. Since it is not possible to completely eliminate this phenomenon, one should strive to limit the value of the negative torque by the correct balancing of the sucker-rod pump. In all cases, the change in the operating mode of a new constructive solution of beamless pumping unit requires new calculations, and requires changing the position and weights of movable and rotary counterweights (with combined balancing).


2020 ◽  
Vol 71 (1) ◽  
pp. 395-399
Author(s):  
Dorin Badoiu ◽  
Georgeta Toma

In the kinetostatic study of the mechanism of the sucker rod pumping units, the cinematic motion parameters of the elements are considered to be known, assuming that the cranks have a constant angular velocity imposed by the operating functioning conditions of the pumping unit. The paper analyzes the dynamic response of the mechanism of these pumping units, which implies the determination of the variation of the angular acceleration of the cranks during the operating cinematic cycle. A series of results regarding the determination of the variation of the angular acceleration of the cranks during the cinematic cycle in the case of the mechanism of a C-640D-305-120 pumping unit are presented. The obtained results are checked by comparing the experimental curves of variations of the acceleration at the polished rod with those obtained by simulation using a computer program developed by the authors in which the angular acceleration of the cranks was taken into consideration.


2021 ◽  
Vol 246 ◽  
pp. 640-649
Author(s):  
Kamil Urazakov ◽  
Veronika Molchanova ◽  
Pavel Tugunov

The efficiency of sucker rod pump installations, which have become widespread in mechanized lift practice, is largely determined by the balance of the drive. During the operation of sucker rod installations, the balance of loads acting on the rod string and the drive can change significantly due to changes in the dynamic fluid level, which leads to a decrease in balance and an increase in loads on the pumping equipment units. The increase and decrease in the dynamic level in accordance with the pumping and accumulation cycle occurs in wells operating in the periodic pumping mode. It is shown that during the operation of equipment in a periodic mode, fluctuations in the dynamic level and, accordingly, in the loads acting on the nodes occur. This leads to the need for dynamic adjustment of the balancing weights to ensure the balance of the pumping unit. A system for automatic balancing of the rod drive has been developed, including a balancing counterweight, an electric motor that moves the load along the balance beam, a propeller and a computing unit. To study the effectiveness of the proposed device, a complex mathematical model of the joint operation of the reservoir - well - sucker rod pump - rod string – pumping unit has been developed. It is shown that due to the dynamic adjustment of the balance counterweight position, the automatic balancing system makes it possible to significantly reduce the amplitude value of the torque on the crank shaft (in comparison with the traditional rod installation) and provide a more uniform load of the electric motor. Equalization of torque and motor load reduces the power consumption of the unit.


Sign in / Sign up

Export Citation Format

Share Document