ANALYSIS OF KINEMATIC DIAGRAMS OF EXISTING PUMPING UNITS

Author(s):  
V. Ya. Grudz ◽  
Ya. V. Grudz ◽  
V. V. Bevz

The kinematic schemes of the installations of oil well equipment for oil production are considered, the estimation of their efficiency is given, the efforts on the structural elements in the process of its operation are analyzed. On the basis of the analysis of designs of hydraulic drive rod pump units it is shown that any hydraulic drive rod unit can be considered as a set of several functional blocks, of which the unit of the body organ that carries out the movement of the column of the rod, the block of the hydraulic drive that converts the energy of the energy units is mandatory. drive into the fluid flow of the working fluid and the block system of reversing the flow of the working fluid. It is proved that all installations that use for oil extraction have significant disadvantages, which in this design can not be eliminated, because improvement of one defect leads to deterioration of its other parameters. As a prototype in the design of a new installation, the most advanced designs were taken, and in order to create a new design a complete analysis of each of them was made, a design was selected that has improved characteristics in comparison with the others and will serve to take into account and eliminate the defects that must be taken into account in the design. The technical task of creating a new design is to increase the reliability of the drive, simplify the system of load compensation, eliminate leakage of working fluid and increase the efficiency of the deep-pumping equipment. The analysis of the workflow of the installation made it possible to evaluate the efficiency of operation, which is important in the design of the equipment, in order to improve the reliability of its operation in specific conditions and to reduce energy consumption, ie increase the efficiency of the system.

2019 ◽  
Vol 70 (5) ◽  
pp. 1795-1799
Author(s):  
Georgeta Toma

Finding optimal solutions to design the mechanism of the conventional sucker rod pumping units is always present due to many problems that involve. The study in this case involves both the cinematic and dynamic analysis of the mechanism of the conventional pumping units, making sure that the optimization solution maintain unchanged certain operating parameters of the pumping equipment such as the stroke of the sucker rod column. In the paper is presented a method of determining the optimal dimensions of the structural elements of the mechanism of the conventional pumping units in order to reduce the maximum values of the connection forces in the bearings in the conditions of maintaining unchanged the stroke of the sucker rod column. The simulations have been performed in the case of a C-640D-305-120 pumping unit.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Rizki Andalia ◽  
Mulia Aria Suzanni ◽  
Rini Rini

Lipstick or lip dye is a cosmetic dose that serves to coloring, decorative the lips, as a moisturizing material and protect the lips from exposure the sun to provide optimum results. Lipstick should not contain chemicals such as lead (Pb) because the Pb is a heavy metal that is very dangerous when continuously used on the skin, because it will be absorbed into the blood and attack the body organ causing the onset of disease. According to BPOM that the lead rate on the lipstick does not exceed the permissible limit of 20 mg/kg or 20 ppm.This research aims to know the levels contained in the samples are 4 brands of matte lipstick that are sold in the Aceh market in Banda Aceh City with the method of atomic absorption spectrophotometry (AAS). The results showed that on the 4 brands of lipstick matte contain heavy metal lead (Pb) with a rate still qualified allowed by BPOM  is samples A, B, C, and D, respectively at 0.24 ppm; 0.10 ppm; 2.87 ppm and 1.32 ppm, so that the 4 brands of lipstick matte are still used.


2021 ◽  
Vol 3 (144) ◽  
pp. 116-121
Author(s):  
Nikita A. Pen’kov ◽  
◽  
Oleg A. Sidorkin ◽  
Sergey Yu. Zhachkin ◽  
Anatoliy I. Zavrazhnov ◽  
...  

One of the most common reasons for the failure of hydraulic drive systems for agricultural machinery is the working fluid leak in the contact points of the rubbing surfaces of hydraulic blocks. The application of composite coatings based on chromium on the contacting surfaces allows you to restore the defect in the shape of the part caused by wear, as well as reduce the friction coefficient at the contact points, which positively affects the wear resistance of the part. (Research purpose) The research purpose is in developing technologies for restoring parts of agricultural machinery with predetermined operational properties. (Materials and methods) A servo valve, widely used in various hydraulic drive systems, was used as an experimental sample. Its working surface was restored with a composite coating applied by electroplating to increase the wear resistance of the servo valve. (Results and discussion) Authors conducted a series of direct measurements under the same conditions. The article presents the de-pendence of the microhardness on the parameters of the electrolysis mode and the thickness of the applied coating using the method of least squares. The nature of changes in microhardness and residual stresses was evaluated to determine the quality of the coatings. The article presents the dependences of these indicators on various control parameters (current density, temperature, tool pressure). The equations of the regression of the main qualitative and accuracy characteristics of the parts were deter-mined using the apparatus of the theory of experimental planning. (Conclusions) The article presents the method for predicting coatings of a given quality, taking into ac-count the influence of the current density and the temperature of the electrolyte during electrolysis on the nature of the precipitation obtained. The influence of the tool pressure on the depth of deformation of the formed layers was estimated. This approach allows us to evaluate the nature of the stress distribution in the formed coating and the quality of the restored parts.


2021 ◽  
Author(s):  
R.V. Yudin ◽  
◽  
R.N. Puzakov ◽  

During the movement of the tractor on the uneven terrain, there are fluctuations that cause jumps of the working fluid in the hydraulic system and high dynamic loads. The solution to this problem is the use of an energy-saving hydraulic drive with a hydraulic accumulator and a system of aggregates this leads to increased efficiency and increased productivity of skidding grippers. A mathematical model of working processes with an energy-saving hydraulic drive is compiled.


2021 ◽  
pp. 113-118

Nesfatin-1is first described in 2006 as an anorectic peptide and regulate food intake. In following years, the studies demonstrated the presence of nesfatin-1 in central and various peripheral tissues. Thus, nesfatin-1 popularity increasing widely in clinical medicine, especially in cardiology, neurology, reproduction, metabolic disorders, psychiatric disorders, gastrointestinal system. Today, the main point concerning nesfatin-1 action in body organ and systems is concentrate its biological signals effects. Thus the increasing knowledge in these area will be highlighted for future studies especially in serious health problem all over the world population.


2020 ◽  
Vol 21 (3) ◽  
pp. 309
Author(s):  
Maryam Fallah Abbasi ◽  
Hossein Shokouhmand ◽  
Morteza Khayat

Electronic industries have always been trying to improve the efficiency of electronic devices with small dimensions through thermal management of this equipment, thus increasing the use of small thermal sinks. In this study micro heat pipes with triangular and square cross sections have been manufactured and tested. One of the main objectives is to obtain an understanding of micro heat pipes and their role in energy transmission with electrical double layer (EDL). Micro heat pipes are highly efficient heat transfer devices, which use the continuous evaporation/condensation of a suitable working fluid for two-phase heat transport in a closed system. Since the latent heat of vaporization is very large, heat pipes transport heat at small temperature difference, with high rates. Because of variety of advantage features these devices have found a number of applications both in space and terrestrial technologies. The theory of operation micro heat pipes with EDL is described and the micro heat pipe has been studied. The temperature distribution have achieved through five thermocouples installed on the body. Water and different solution mixture of water and ethanol have used to investigate effect of the electric double layer heat transfer. It was noticed that the electric double layer of ionized fluid has caused reduction of heat transfer.


2018 ◽  
Vol 7 (4.3) ◽  
pp. 6 ◽  
Author(s):  
Angela Voloshina ◽  
Anatolii Panchenko ◽  
Oleg Boltynskiy ◽  
Igor Panchenko ◽  
Olena Titova

The output characteristics of a planetary (orbital) hydraulic motor could be significantly improved if the kinematic diagrams for its working fluid distribution system are chosen correctly and substantiated. Fluctuations in the flow of the power fluid cause pulsation in the cavity of the input pressure of the hydraulic motor. This results to vibration of the hydraulic system elements. Thus, the hydraulic motor can be considered as a source of pulsation which leads to functional failures of the hydraulic system. As they run at low rotational speeds with high torque, planetary hydraulic motors are commonly applied for a hydraulic drive in active working tools of self-propelled machinery. It has been established that one of the main components of a planetary hydraulic motor, which causes pressure pulsations, is its distribution system. The frequency and amplitude of these pulsations depends on the kinematic diagram for the distribution system of the power fluid. Therefore, we studied how the kinematic diagram for the distribution system effects on the output characteristics of a planetary motor. Since the change in the capacity of a distribution system with various kinematic diagrams influences on the output characteristics of a planetary motor, the impact was investigated. The kinematic diagrams, which improve the output characteristics of planetary hydraulic motors, were justified. 


1957 ◽  
Vol 3 (3) ◽  
pp. 225-242 ◽  
Author(s):  
Saul Feldman

This paper is concerned with the rates at which atoms and molecules react in the air that flows over a body flying through the atmosphere at hypersonic speeds. Using air as a working fluid, a series of shock tube experiments were carried out to provide information about these rates. Mach angle measurements were made to determine the state of the gas in three situations of interest.Flow over flat plates was used to determine the state of the gas behind the incident normal shock; temperatures in the gas that passed through the shock varied between 2000 and 6000°:K and densities between standard and 1/80 of standard density.Flow over wedges was employed to decelerate the flow behind the incident shock to a small supersonic Mach number; here temperatures downstream of the oblique shock increased, at most, 2000°:K above the free stream value.A Prandtl-Meyer expansion was used to cool rapidly the dissociated gas, so that the recombination process could be investigated; temperatures dropped at most 2500°:K and the densities varied between standard and 1/200 of the standard value. In some cases, the initial degree of dissociation of air was over 45%.The results (figure 11) indicate that the dissociation and recombination relaxation times of the chemical species found in air are very fast, when compared to the time it takes a particle of gas to flow either around a blunt body in hypersonic flight or past smtill models in shock tubes. Thus the shock tube is shown to be an instrument capable of supplying air at high temperatures in thermodynamic equilibrium (figure 5).In the case of a non-melting blunt body of about 1 ft. diameter flying through the atmosphere at hypersonic speeds, the present results imply that, when the gas behind the detached shock is in thermodynamic equilibrium, the flow will also be in equilibrium as it expands around the body, provided its speed is greater than 10 000 ft./sec at altitudes below 180 000 ft. (figure 12).


Author(s):  
N.D. Chainov ◽  
P.R. Vallejo Maldonado

Automobile piston engines with a desaxial crank mechanism are characterized by increased vibration activity associated with a cyclic change in the pressure of the working fluid in the cylinders and inertial forces associated with the reciprocating and rotational movement of the crank mechanism moving masses. Properties reflecting the consumer properties of the engine, including acoustic characteristics, are largely determined by the level of vibration of the structural elements of the desaxial crank mechanism and, first of all, by the balance of inertial forces during operation. The article discusses balancing of five-cylinder four-stroke VR type engines with a desaxial crank mechanism and uniform flash alternation. The authors introduce formulas that can be used to determine and analyze moments of the inertia forces of the reciprocating and rotating masses arising in VR5 engines at the set values of the cylinder camber angle, the ratio of the crank radius to the connecting rod length and the relative displacement of the cylinder axis. A method of balancing the moments of inertia forces of the reciprocating and rotating masses is proposed.


Sign in / Sign up

Export Citation Format

Share Document