Tertiary Treatment of Livestock Wastewater in the Context of Alternative Water Resources for Sustainable Agriculture

2020 ◽  
Vol 71 (10) ◽  
pp. 161-170
Author(s):  
Carmen Tociu ◽  
Cristina Maria ◽  
Gyorgy Deak ◽  
Irina-Elena Ciobotaru ◽  
Alexandru-Anton Ivanov ◽  
...  

The limited availability and quality of water resources are key issues of water management, and the protection and preservation of water resources are a requirement in the context of accelerated economic growth and principles of sustainable development. The experimental research presented in this paper is based on the need to identify alternative water sources and support unconventional wastewater treatment methods which would enable their reuse in areas affected by water scarcity and drought. Livestock wastewater contain significant levels of nutrients (nitrogen and phosphorus) and may represent an attractive water source for crop irrigation. This paper evaluates the efficacy of a proposed technological process for tertiary wastewater treatment consisting of two steps: electrochemical treatment for the removal of suspended and colloidal impurities and ozone disinfection. The experimental results showed higher efficiencies for the removal of chemical pollutants (92.5% COD, 79.3% BOD, 98.6% TSS, 41% residue saline) and significant inactivation of microorganisms (over 99.9% for total coliform bacteria and in some cases 100% for faecal coliform bacteria and faecal streptococci). The quality of the effluent complies with the regulations for wastewater use in agriculture and allows its reuse for different categories of use considering the required conditions for soil/crops. The successful application of treated wastewater to agricultural crops depends in a high extent on the good practices aimed on the improvement of crop yield and quality, optimisation of soil productivity and protection of the environment undertaken by the economic entities.

1996 ◽  
Vol 33 (10-11) ◽  
pp. 401-408
Author(s):  
Naïla Ouazzani ◽  
Khadija Bousselhaj ◽  
Younes Abbas

The aim of this work was to determine the depuration efficiencies of an infiltration percolation plant to remove organic matter and nutrients (N and P) and to test the effect of treatment by such system on the fertilizer value of wastewater compared to untreated influent and a control (groundwater). Results of investigations carried out over a month of each season showed the high capacity of this depuration system to remove both particulate and dissolved organic matter (TSS 91%, COD 93% and dCOD 89 to 95%) at all season. Nitrogen and phosphorus were more eliminated at winter and summer. At spring they presented a low percent removal efficiency due probably to overloaded influent. Tests consisting in the reuse a raw wastewater (RW), settled wastewater (SW) or completely treated wastewater (FW) for irrigation of (Lolium perenne) plots showed that biomass yield, nutrients (N,P) exported by plants and protein amount in the plants tissue decreased from plots irrigated by (RW) to completely treated wastewater. But all of them were more important than in the control plants (irrigated by groundwater) and exceeded the mean values reported in literature for meadows plants. The amount of nitrogen and P2O5) applied during the irrigation by wastewater, was equivalent or superior to recommanded dose of fertilizer for meadows. The expected meat or milk production showed a promising potentiality to promove the nutritional quality of farm animals food by using treated wastewater.


2020 ◽  
Vol 4 ◽  
Author(s):  
Hsin-Bai Yin ◽  
Nidhi Gupta ◽  
Chi-Hung Chen ◽  
Ashley Boomer ◽  
Abani Pradhan ◽  
...  

Treated wastewater (TW) and roof-collected rain water (RW) that meet the required microbial quality as per Food Safety Modernization Act (FSMA) regulation may serve as alternative irrigation water sources to decrease the pressure on the current water scarcity. Alternative water sources may have different water characteristics that influence the survival and transfer of microorganisms to the irrigated produce. Further, these water sources may contain pathogenic bacteria such as Shiga-toxigenic Escherichia coli. To evaluate the risk associated with TW and RW irrigation on the fresh produce safety, the effect of TW and RW irrigation on the transfer of two non-pathogenic E. coli strains as surrogates for E. coli O157:H7 to different lettuce cultivars grown in the field was investigated. Lettuce cultivars “Annapolis,” “Celinet,” and “Coastline” were grown in the field at the Fulton farm (Chambersburg, PA). Approximately 10 days before harvest, lettuce plants were spray-irrigated with groundwater (GW), TW, or RW containing 6 log CFU ml−1 of a mixture of nalidixic acid-resistant E. coli O157:H12 and chloramphenicol-resistant E. coli K12 in fecal slurry as non-pathogenic surrogates for E. coli O157:H7. On 0, 1, 3, 7, and 10 days post-irrigation, four replicate lettuce leaf samples (30 g per sample) from each group were collected and pummeled in 120 ml of buffered peptone water for 2 min, followed by spiral plating on MacConkey agars with antibiotics. Results showed that the recovery of E. coli O157:H12 was significantly greater than the populations of E. coli K12 recovered from the irrigated lettuce regardless of the water sources and the lettuce cultivars. The TW irrigation resulted in the lowest recovery of the E. coli surrogates on the lettuce compared to the populations of these bacteria recovered from the lettuce with RW and GW irrigation on day 0. The difference in leaf characteristics of lettuce cultivars significantly influenced the recovery of these surrogates on lettuce leaves. Populations of E. coli O157:H12 recovered from the RW-irrigated “Annapolis” lettuce were significantly lower than the recovery of this bacterium from the “Celinet” and “Coastline” lettuce (P < 0.05). Overall, the recovery of specific E. coli surrogates from the RW and TW irrigated lettuce was comparable to the lettuce with the GW irrigation, where GW served as a baseline water source. E. coli O157:H12 could be a more suitable surrogate compared to E. coli K12 because it is an environmental watershed isolate. The findings of this study provide critical information in risk assessment evaluation of RW and TW irrigation on lettuce in Mid-Atlantic area.


1996 ◽  
Vol 33 (10-11) ◽  
pp. 149-159 ◽  
Author(s):  
Marcelo Juanico

Stabilization reservoirs receive partially treated wastewater effluents for storage and controlled release. They are used in Israel for two purposes: a) to upgrade the quality of the effluents during the long residence time within the reservoirs and, b) to store the effluents during the rainy winter in order to perform agricultural irrigation during the dry summer. The improvement obtained in the quality of the effluents (i.e., the treatment capacity of the reservoirs) depends on the operational regime of the reservoirs as reactors: continuous flow, in series, batch, etc. The performance of the reservoirs as batch reactors for wastewater treatment is herein analyzed based on outdoor experiments carried out in real scale reservoirs with different hydraulic and organic loadings. The results of the experiments are compared with forecasts obtained through statistical and kinetic models. Stabilization reservoirs working in batch mode, when properly designed and operated, are able to remove COD, BOD, TSS and detergents by up to one order of magnitude, and Faecal coliforms by up to five orders of magnitude (before chlorination). A significant removal of heavy metals, bacteriophages and other pollutants is also obtained. The quality of the effluents released from the reservoirs, added to the capability for controlled release, permits both wide crop rotation and easy management of irrigation.


2014 ◽  
Vol 675-677 ◽  
pp. 960-963
Author(s):  
Li Feng Sun ◽  
Qing Jie Qi ◽  
Xiao Liang Zhao ◽  
Rui Feng Li

In order to effectively control pollution of sources of drinking water, improve the environmental quality of drinking water and guarantee the sanitation of drinking water, it is very important to assess water source quality. Main factors of drinking water were identified. Then principal component analysis was used to establish assessment model of drinking water, which could ensure that under the condition that the primitive data information was in the smallest loss, a small number of variables were used to replace the integrated multi-dimensional variables to simplify the data structure. The weightings of principal component were determinated as theirs pollution ratios. This paper was based on the theoretical study of principal component analysis, used the monitoring data on water quality of the main water resources in 2013 to evaluate and analyze the water quality of water resources. Analysis content included the main affecting factors, cause of pollution and the degree of pollution.The resulted showed that: the main affecting factors on water quality of Fo Si water source was CODMn, TP, fluoride.


2018 ◽  
Vol 04 (02) ◽  
pp. 1750008 ◽  
Author(s):  
A. Bellver-Domingo ◽  
F. Hernández-Sancho

The use of effluents from wastewater treatment plants (WWTPs) as a non-conventional source of water for wetlands in arid and semi-arid regions is becoming the most-often sought solution for maintaining water flow in sensitive wetlands there. However, the managing effluent quality should be a requirement because excess nutrients (mainly nitrogen and phosphorus) can generate eutrophication problems in wetlands. In the Mediterranean area in general, wetlands are strongly vulnerable to eutrophication, which is why they are classified as sensitive areas. Our study uses a data set from 24 WWTPs, effluents of which are discharged to wetlands in the coast of Community of Valencia. We use the shadow prices methodology to quantify the environmental avoided costs and the environmental benefit (both in monetary units) of nitrogen and phosphorus removal in wastewater effluent. The results highlight the importance of reducing these pollutants in WWTP effluents for maintaining the suitable water quality in wetlands. Our study demonstrates the potential for using shadow prices methodology for monetary valuation of environmental externalities in wetlands that use treated wastewater as a non-conventional water source.


2015 ◽  
Vol 10 (3) ◽  
pp. 424-431 ◽  
Author(s):  
T. Morales-Pinzón ◽  
M. I. García-Serna ◽  
M. T. Flórez-Calderón

An analysis of the utilisation and quality of rainwater in different collection systems located in the Pereira–Dosquebradas (Colombia) conurbation was conducted to evaluate the conditions in these systems and thus determine whether rainwater is safe water for domestic, commercial and industrial purposes. The quality of rainwater and its relation to selected variables (roofing material, material deposits, piping material and amount of precipitation) were evaluated. Six buildings with different types of roofing (zinc, polycarbonate or fibre cement) that have installed systems to capture rainwater were selected for the evaluation. According to the results, the sampled water is suitable for different uses. In cities, rainwater can be adapted and eventually used as an alternative water source, thereby reducing dependence on local and external sources.


2020 ◽  
Vol 1 (4) ◽  
pp. 9-15
Author(s):  
Rafael Marín Galvín

Bio-solids are the final fate of pollution present in urban wastewater, reaching the production of these ones in Spanish WWTPs 701,751 T/year (dates of 2018). Considering that 85% of Spanish bio-solids are used in agronomy, it is important to know characteristics of biosolids there produced, and in this way, we have investigated bio-solids generated in La Golondrina´s WWTP (Córdoba, Spain) along 2000-2019. This WWTP is a conventional facility operated by activated sludges (26.55x106 m3/year treated) which has produced 1.43 kg of bio-solids per m3 of treated wastewater (38.000 T/year). Our results indicated that bio-solids had a dryness over initial mass of 22.3%, and 74.9% of organic matter over dried matter (o.d.m.). At the same time, major components detected in bio-solids were N, P and Ca which levels were 5.0%, 3.5% and 3.7%, respectively. On the other hand, concentration of total metals in bio-solids ranged 13,024 mg/kg o.d.m., being the main metal Fe (11.749 mg/kg o.d.m.) followed by Zn, Cu and Mn, with levels as mg/kg o.d.m. of 463.1, 392.8 and 265.7, respectively. Evolution per year of all the investigated parameters are shown in the paper. Taking into account the use of bio-solids in agronomy, we have evaluated levels of metals limited by the Spanish normative to this respect: thus, the seven metals restricted (Cd, Cu, Ni, Pb, Zn, Hg and Cr) exhibited concentration in bio-solids very lower than parametric values established. Moreover, we have estimated the ratios of accumulation of organics and metals from wastewater to bio-solids: thus, organic matter, N and P, were accumulated in bio-solids respectively, 342, 356 and 643 times, and total metals, 2,632 times. Finally, levels of Escherichia coli slightly varied from wastewater to bio-solids: 1.5x108 colony-forming units/L in the first one, and 0.9x108/g (o.d.m.) in the second ones.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7455 ◽  
Author(s):  
Imrose Kauser ◽  
Mark Ciesielski ◽  
Rachel S. Poretsky

Background In the United States, an estimated 14,748 wastewater treatment plants (WWTPs) provide wastewater collection, treatment, and disposal service to more than 230 million people. The quality of treated wastewater is often assessed by the presence or absence of fecal indicator bacteria. UV disinfection of wastewater is a common final treatment step used by many wastewater treatment plants in order to reduce fecal coliform bacteria and other pathogens; however, its potential impacts on the total effluent bacterial community are seemingly varied. This is especially important given that urban WWTPs typically return treated effluent to coastal and riverine environments and thus are a major source of microorganisms, genes, and chemical compounds to these systems. Following rainfall, stormflow conditions can result in substantial increases to effluent flow into combined systems. Methods Here, we conducted a lab-scale UV disinfection on WWTP effluent using UV dosage of 100 mJ/cm2 and monitored the active microbiome in UV-treated effluent and untreated effluent over the course of 48 h post-exposure using 16S rRNA sequencing. In addition, we simulated stormflow conditions with effluent UV-treated and untreated effluent additions to river water and compared the microbial communities to those in baseflow river water. We also tracked the functional profiles of genes involved in tetracycline resistance (tetW) and nitrification (amoA) in these microcosms using RT-qPCR. Results We showed that while some organisms, such as members of the Bacteroidetes, are inhibited by UV disinfection and overall diversity of the microbial community decreases following treatment, many organisms not only survive, but remain active. These include common WWTP-derived organisms such as Comamonadaceae and Pseudomonas. When combined with river water to mimic stormflow conditions, these organisms can persist in the environment and potentially enhance microbial functions such as nitrification and antibiotic resistance.


2020 ◽  
Vol 18 (6) ◽  
pp. 1124-1138
Author(s):  
Nisreen A. AL-Quraan ◽  
Lubna I. Abu-Rub ◽  
Abdel-Kareem Sallal

Abstract Jordan is one of the lowest countries in the world in terms of water resources. The reuse of treated wastewater is an important alternative to supply agricultural demands for water. In Jordan, Kherbet Al-Samra wastewater treatment plant (KSWWTP) is the largest and its effluent is mainly used for irrigation purposes. In this study, bacterial contamination and mutagenic potential were evaluated in six sites, beginning with KSWWTP and ending with King Tallal Dam. The results showed high contamination with many pathogenic bacteria and coliforms. The isolated pathogenic bacteria were Salmonella sp., Shigella sp., Bacillus cereus and Staphylococcus aureus. The isolated opportunistic pathogenic bacteria were Acinetobacter lwoffii, Elizabethkingia meningosepticum, Pseudomonas fluorescens and Bacillus licheniformis. These bacteria were found in all sampling sites without a specific prevalence pattern. Differences in temperature between seasons affect total coliform and other bacterial count. All water samples showed positive mutagenic activity and high bacterial pollution. Improving the disinfection efficiency in the wastewater treatment plant is important to minimize potential toxicity and exposure of public health to pathogenic bacteria, reduce water resources' contamination and environmental pollution. Increasing effluent sampling frequency from KSWWTP is required to monitor bacterial contamination and toxicity/mutagenicity level for water safety and public health risk assessments.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 171-179 ◽  
Author(s):  
G. Bahre ◽  
W. Firk ◽  
M. Gassen

The report describes low-cost development and design of a two-stage wastewater treatment plant for 90,000 PE to achieve the highest possible degree of phosphorus and nitrogen elimination. The receiving water body of the treatment plant is a small watercourse fed almost exclusively by treated wastewater. A significant improvement in the water quality of this watercourse is planned. In particular, the performance of the wastewater treatment plant will need to be enhanced. The plant operator, the Erft River Board, organized a competition to attract solutions for an appropriate development of the plant from several consultants. Apart from embodying the concept of extensive wastewater treatment, designs were expected to preserve the existing infrastructure of the two-stage treatment plant as far as possible. Following selection of the most suitable design, the intended process technology is currently being tested in a pilot-scale plant. Planning envisages advanced wastewater treatment processes, including enhanced biological phosphorus removal, chemical precipitation/flocculation, nitrification and denitrification and combined coagulation/filtration. The pilot-scale investigations are carried out in close co-operation between the water authorities, the plant operators, the consultant, and a university institute of sanitary engineering. The paper presents the design and first results of the pilot-scale investigations in terms of the parameters BOD5, COD, phosphorus, ammonia and nitrate.


Sign in / Sign up

Export Citation Format

Share Document