The performance of batch stabilization reservoirs for wastewater treatment, storage and reuse in Israel

1996 ◽  
Vol 33 (10-11) ◽  
pp. 149-159 ◽  
Author(s):  
Marcelo Juanico

Stabilization reservoirs receive partially treated wastewater effluents for storage and controlled release. They are used in Israel for two purposes: a) to upgrade the quality of the effluents during the long residence time within the reservoirs and, b) to store the effluents during the rainy winter in order to perform agricultural irrigation during the dry summer. The improvement obtained in the quality of the effluents (i.e., the treatment capacity of the reservoirs) depends on the operational regime of the reservoirs as reactors: continuous flow, in series, batch, etc. The performance of the reservoirs as batch reactors for wastewater treatment is herein analyzed based on outdoor experiments carried out in real scale reservoirs with different hydraulic and organic loadings. The results of the experiments are compared with forecasts obtained through statistical and kinetic models. Stabilization reservoirs working in batch mode, when properly designed and operated, are able to remove COD, BOD, TSS and detergents by up to one order of magnitude, and Faecal coliforms by up to five orders of magnitude (before chlorination). A significant removal of heavy metals, bacteriophages and other pollutants is also obtained. The quality of the effluents released from the reservoirs, added to the capability for controlled release, permits both wide crop rotation and easy management of irrigation.

1995 ◽  
Vol 31 (7) ◽  
pp. 201-212 ◽  
Author(s):  
H. Løkkegaard Bjerre ◽  
T. Hvitved-Jacobsen ◽  
B. Teichgräber ◽  
D. te Heesen

The Emscher river in the Ruhr district, Germany, is at present acting as a large wastewater collector receiving untreated and mechanically treated wastewater. Before the Emscher flows into the river Rhine, treatment takes place in a biological wastewater treatment plant. The transformations of the organic matter in the Emscher affect the river catchment, the subsequent treatment and the river quality. This paper focuses on evaluation of methods for quantification of the microbial transformations of wastewater in the Emscher with emphasis on characterization of wastewater quality changes in terms of biodegradability of organic matter and viable biomass. The characterization is based on methods taken from the activated sludge process in wastewater treatment. Methods were evaluated on the basis of laboratory investigations of water samples from the Emscher. Incubation in batch reactors under aerobic, anoxic and anaerobic conditions were made and a case study was performed. The methods described will be used in an intensive study of wastewater transformations in the Emscher river. This study will be a basis for future investigations of wastewater quality changes in the Emscher.


2020 ◽  
Vol 1 (4) ◽  
pp. 9-15
Author(s):  
Rafael Marín Galvín

Bio-solids are the final fate of pollution present in urban wastewater, reaching the production of these ones in Spanish WWTPs 701,751 T/year (dates of 2018). Considering that 85% of Spanish bio-solids are used in agronomy, it is important to know characteristics of biosolids there produced, and in this way, we have investigated bio-solids generated in La Golondrina´s WWTP (Córdoba, Spain) along 2000-2019. This WWTP is a conventional facility operated by activated sludges (26.55x106 m3/year treated) which has produced 1.43 kg of bio-solids per m3 of treated wastewater (38.000 T/year). Our results indicated that bio-solids had a dryness over initial mass of 22.3%, and 74.9% of organic matter over dried matter (o.d.m.). At the same time, major components detected in bio-solids were N, P and Ca which levels were 5.0%, 3.5% and 3.7%, respectively. On the other hand, concentration of total metals in bio-solids ranged 13,024 mg/kg o.d.m., being the main metal Fe (11.749 mg/kg o.d.m.) followed by Zn, Cu and Mn, with levels as mg/kg o.d.m. of 463.1, 392.8 and 265.7, respectively. Evolution per year of all the investigated parameters are shown in the paper. Taking into account the use of bio-solids in agronomy, we have evaluated levels of metals limited by the Spanish normative to this respect: thus, the seven metals restricted (Cd, Cu, Ni, Pb, Zn, Hg and Cr) exhibited concentration in bio-solids very lower than parametric values established. Moreover, we have estimated the ratios of accumulation of organics and metals from wastewater to bio-solids: thus, organic matter, N and P, were accumulated in bio-solids respectively, 342, 356 and 643 times, and total metals, 2,632 times. Finally, levels of Escherichia coli slightly varied from wastewater to bio-solids: 1.5x108 colony-forming units/L in the first one, and 0.9x108/g (o.d.m.) in the second ones.


2014 ◽  
Author(s):  
Tarunveer Singh ◽  
Shubhanshu Jain

Adsorption technique is widely used for removal of toxic organic contaminants from aqueous streams. Owing to the hazardous or otherwise undesirable characteristics of phenolic compounds in particular, their presence in wastewater from municipal and industrial discharge is one of the most important environmental issue. The discharge of poor quality effluents by the chemical-based laboratories and refineries in India is posing a serious threat to water sources and wastewater treatment installations alike. Our study was set up in the Indo - French Unit for Water & Wastewater Technologies (IFUWWT), IIT Delhi. The main objective of this study was to assess the efficiency of a laboratory-scale activated sludge treatment process in producing a final effluent conforming to regulatory standards of Central Pollution Control Board, India (CPCB norms) with regards to COD and metal ion loads. The study was conducted in three principal stages: characterization of wastewater containing nanoparticles; treatability studies of laboratory generated discards and investigations of heavy metal ions before and after treatment. The various raw effluent parameters analyzed were COD, BOD, F/M ratio, Sludge Value Index, Total Solids and concentrations of Cu, Ag and Zn. Studies were conducted using two aerobic sequencing batch reactors (SBR). MLSS of the aeration basin was calculated to be 7180±261.3 mg/L while the F/M ratio was kept down to 0.1560±.0149; besides, an SVI of 107.24 mL/g complied with the state of bioreactor’s sludge. These set of values suggested to set an extended aeration processes for the reactors. Accordingly, the detention time in aeration basin was 24 hours. The results showed over 98% influent COD reduction and nearly 100% removal of metal ions. The sample used was operated on sludge collected from Vasant Kunj Wastewater Treatment plant. Based on the results from waste characterization and treatability studies, it was decided that the mixed liquor discharged in the activation tank should have glucose solution and laboratory discarded sample in 1:1 ratio. The reactor was operated on a glucose fed batch basis for 30 days. For the sake of metal analysis, the digested water samples were analyzed for the presence of copper, silver and zinc using the ElementAS AAS4141 Atomic Absorption Spectrophotometer (by Electronics Corporation of India Ltd). The biosorption capacities were found to be over 95% in all the cases with the minimum correlation coefficient for calibration curve being 0.9811. Such a high sludge yield is suggestive of the fact that heavy metals are in very low concentrations in the considered carboy sample. Because of these insignificant values, the amount of metal ions introduced to the system gets adsorbed almost completely, hence leaving behind no metal ion within the supernatant. Well-treated wastewater has enormous potential as a source of water for crops, households and industry.


2020 ◽  
Vol 71 (10) ◽  
pp. 161-170
Author(s):  
Carmen Tociu ◽  
Cristina Maria ◽  
Gyorgy Deak ◽  
Irina-Elena Ciobotaru ◽  
Alexandru-Anton Ivanov ◽  
...  

The limited availability and quality of water resources are key issues of water management, and the protection and preservation of water resources are a requirement in the context of accelerated economic growth and principles of sustainable development. The experimental research presented in this paper is based on the need to identify alternative water sources and support unconventional wastewater treatment methods which would enable their reuse in areas affected by water scarcity and drought. Livestock wastewater contain significant levels of nutrients (nitrogen and phosphorus) and may represent an attractive water source for crop irrigation. This paper evaluates the efficacy of a proposed technological process for tertiary wastewater treatment consisting of two steps: electrochemical treatment for the removal of suspended and colloidal impurities and ozone disinfection. The experimental results showed higher efficiencies for the removal of chemical pollutants (92.5% COD, 79.3% BOD, 98.6% TSS, 41% residue saline) and significant inactivation of microorganisms (over 99.9% for total coliform bacteria and in some cases 100% for faecal coliform bacteria and faecal streptococci). The quality of the effluent complies with the regulations for wastewater use in agriculture and allows its reuse for different categories of use considering the required conditions for soil/crops. The successful application of treated wastewater to agricultural crops depends in a high extent on the good practices aimed on the improvement of crop yield and quality, optimisation of soil productivity and protection of the environment undertaken by the economic entities.


2019 ◽  
Vol 130 ◽  
pp. 22-30 ◽  
Author(s):  
Andrea López ◽  
Jorge Rodríguez-Chueca ◽  
Rosa Mosteo ◽  
Jairo Gómez ◽  
E. Rubio ◽  
...  

2005 ◽  
Vol 51 (10) ◽  
pp. 211-219 ◽  
Author(s):  
N. Oyama ◽  
J. Nair ◽  
G.E. Ho

An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.


2002 ◽  
Vol 46 (8) ◽  
pp. 177-186 ◽  
Author(s):  
P.A. Paraskevas ◽  
D.L. Giokas ◽  
T.D. Lekkas

The continuously increasing quantities of municipal and industrial wastewater discharged into the sea environment degrade the quality of the water. In this paper, the recent technologies are evaluated, and the practices recommended for the wastewater treatment in coastal urban areas are analyzed, with respect to the requirements of the EU legislation. Also the principles for the disposal of the treated wastewater are discussed. Finally, a brief review of the current situation of wastewater management in Greece is given, regarding the treatment strategies previously presented.


2002 ◽  
Vol 45 (1) ◽  
pp. 91-101 ◽  
Author(s):  
O.R. Zimmo ◽  
R.M. Al-Sa'ed ◽  
N.P. van der Steen ◽  
H. J. Gijzen

A pilot plant experiment was carried out to assess differences in environmental conditions and treatment performance in two systems for wastewater treatment: algae-based ponds (ABP) and duckweed-based (Lemna gibba) ponds (DBP). Each system consisted of a sequence of 4 equal ponds in series and was fed with a constant flow rate of partially treated wastewater from Birzeit University. Physico-chemical parameters and the removal of organic matter, nutrients and faecal coliforms were monitored within each treatment system over a period of 12 months. The results show clear differences in the environmental conditions. In ABP significantly (P>0.05) higher pH and DO values were observed than in DBP. DBP were more efficient in removal of organic matter (BOD and TSS) than ABP. The faecal coliform reduction was higher in ABP. However, the quality of the effluent from the third and fourth duckweed pond (total retention time of 21 and 28 days) did not exceed the WHO-criteria for unrestricted irrigation during both the summer and winter period, respectively. During the summer period, the average total nitrogen was reduced more in ABP (80%) than in DBP (55%). Lower values were measured during the winter period. Seasonal nitrogen reductions of the two systems were significantly different (P>0.05). In DBP, 33% and 15% of the total nitrogen was recovered into plant biomass and removed from the system via duckweed harvesting during the summer and winter period, respectively. This study showed that there were differences in the environmental conditions and treatment efficiencies between the two systems.


Author(s):  
Т.Г. КОРОТКОВА ◽  
А.М. ЗАКОЛЮКИНА ◽  
А.А. ГЛЫТЯН

На основе выборки из литературных источников представлены данные по показателям качества сточных вод (СВ) отечественных молокоперерабатывающих предприятий до очистки. Диапазон изменений основных показателей составил: рН от 4,7 до 11,5; ХПК от 1300 до 3000 мг О2/л; содержание взвешенных веществ от 350 до 950 мг/л, жиров 900 мг/л; максимальное значение БПКполн 2400 мг О2/л. На основе анализа технологических схем очистки сточных вод, применяемых в молочной промышленности, предложена обобщенная поэтапная схема стадий очистки и дан перечень оборудования, используемого на каждой стадии, при сбросе очищенных стоков в водоем. Обоснована необходимость каждой стадии очистки и предложенного оборудования, применяемого в зависимости от качественного состава исходных СВ. Применение на заключительной стадии ионообменной установки или установки обратного осмоса способствует доочистке СВ до показателей качества очищенной воды, соответствующей требованиям к восстановленной воде, полученной из СВ. Подбор оборудования является индивидуальным для каждого предприятия в связи с разнообразными свойствами сырья и ассортиментом выпускаемой продукции. On the basis of a sample from the literature data on indicators of quality of wastewater of domestic dairy enterprises before treatment are presented. The range of changes of the main indicators were: pH from 4,7 to 11,5; COD from 1300 to 3000 mg O2/l; content of suspended solids from 350 to 950 mg/l, fat 900 mg/l; the maximum value of BOD is 2400 mg O2/l. On the basis of the analysis of technological schemes of wastewater treatment used in the dairy industry, summarize step-by-step scheme of wastewater treatment is proposed and a list of equipment used at each stage of treated wastewater at their discharge in water is given. The need for each stage of treatment and the proposed equipment used depending on the quality of the original wastewater is justified. The use of the ion-exchange unit or installation of reverse osmosis at the final stage contributes to the tertiary treatment of wastewater to the quality indicators of purified water that meets the requirements for recovered water obtained from wastewater. Selection of equipment is individual for each enterprise due to the various properties of the raw materials and the range of products manufactured.


2014 ◽  
Author(s):  
Tarunveer Singh ◽  
Shubhanshu Jain

Adsorption technique is widely used for removal of toxic organic contaminants from aqueous streams. Owing to the hazardous or otherwise undesirable characteristics of phenolic compounds in particular, their presence in wastewater from municipal and industrial discharge is one of the most important environmental issue. The discharge of poor quality effluents by the chemical-based laboratories and refineries in India is posing a serious threat to water sources and wastewater treatment installations alike. Our study was set up in the Indo - French Unit for Water & Wastewater Technologies (IFUWWT), IIT Delhi. The main objective of this study was to assess the efficiency of a laboratory-scale activated sludge treatment process in producing a final effluent conforming to regulatory standards of Central Pollution Control Board, India (CPCB norms) with regards to COD and metal ion loads. The study was conducted in three principal stages: characterization of wastewater containing nanoparticles; treatability studies of laboratory generated discards and investigations of heavy metal ions before and after treatment. The various raw effluent parameters analyzed were COD, BOD, F/M ratio, Sludge Value Index, Total Solids and concentrations of Cu, Ag and Zn. Studies were conducted using two aerobic sequencing batch reactors (SBR). MLSS of the aeration basin was calculated to be 7180±261.3 mg/L while the F/M ratio was kept down to 0.1560±.0149; besides, an SVI of 107.24 mL/g complied with the state of bioreactor’s sludge. These set of values suggested to set an extended aeration processes for the reactors. Accordingly, the detention time in aeration basin was 24 hours. The results showed over 98% influent COD reduction and nearly 100% removal of metal ions. The sample used was operated on sludge collected from Vasant Kunj Wastewater Treatment plant. Based on the results from waste characterization and treatability studies, it was decided that the mixed liquor discharged in the activation tank should have glucose solution and laboratory discarded sample in 1:1 ratio. The reactor was operated on a glucose fed batch basis for 30 days. For the sake of metal analysis, the digested water samples were analyzed for the presence of copper, silver and zinc using the ElementAS AAS4141 Atomic Absorption Spectrophotometer (by Electronics Corporation of India Ltd). The biosorption capacities were found to be over 95% in all the cases with the minimum correlation coefficient for calibration curve being 0.9811. Such a high sludge yield is suggestive of the fact that heavy metals are in very low concentrations in the considered carboy sample. Because of these insignificant values, the amount of metal ions introduced to the system gets adsorbed almost completely, hence leaving behind no metal ion within the supernatant. Well-treated wastewater has enormous potential as a source of water for crops, households and industry.


Sign in / Sign up

Export Citation Format

Share Document