Biosynthesis of Silver Nanoparticles Using Licorice Extract and Evaluation of their Antioxidant Activity

2019 ◽  
Vol 70 (11) ◽  
pp. 4053-4056

This paper presents a simple and eco-friendly method for the synthesis of silver nanoparticles (AgNPs) using licorice (Glycyrrhiza glabra) root extract and the evaluation of their antioxidant activity. UV-Vis spectroscopy, FTIR, TEM and EDX methods were used to characterize the AgNPs. The UV-Vis spectrum shows the characteristic surface plasmon resonance peak at 430 nm. The synthesized AgNPs have a spherical shape and are capped by biomolecules. Furthermore, FTIR spectra and EDX analysis demonstrate the presence of phytochemicals from extract which act as reducing and stabilizing agents. The presence of elemental silver was demonstrated by the peak at 3 keV from EDX spectra. The results following the DPPH free radical scavenging assay suggest that AgNPs present a better antioxidant activity compared to that of the extract. Therefore, the obtained results confirm that licorice represents a source of biomolecules that can be used for synthesizing AgNPs with antioxidant potential. Keywords: licorice, green synthesis, silver nanoparticles, antioxidant activity

2019 ◽  
Vol 70 (11) ◽  
pp. 4053-4056
Author(s):  
Andreia Corciova ◽  
Ana Flavia Burlec ◽  
Ana Maria Gheldiu ◽  
Adrian Fifere ◽  
Ana Lacramioara Lungoci ◽  
...  

This paper presents a simple and eco-friendly method for the synthesis of silver nanoparticles (AgNPs) using licorice (Glycyrrhiza glabra) root extract and the evaluation of their antioxidant activity. UV-Vis spectroscopy, FTIR, TEM and EDX methods were used to characterize the AgNPs. The UV-Vis spectrum shows the characteristic surface plasmon resonance peak at 430 nm. The synthesized AgNPs have a spherical shape and are capped by biomolecules. Furthermore, FTIR spectra and EDX analysis demonstrate the presence of phytochemicals from extract which act as reducing and stabilizing agents. The presence of elemental silver was demonstrated by the peak at 3 keV from EDX spectra. The results following the DPPH free radical scavenging assay suggest that AgNPs present a better antioxidant activity compared to that of the extract. Therefore, the obtained results confirm that licorice represents a source of biomolecules that can be used for synthesizing AgNPs with antioxidant potential.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Preetha Devaraj ◽  
Prachi Kumari ◽  
Chirom Aarti ◽  
Arun Renganathan

Cannonball (Couroupita guianensis) is a tree belonging to the family Lecythidaceae. Various parts of the tree have been reported to contain oils, keto steroids, glycosides, couroupitine, indirubin, isatin, and phenolic substances. We report here the synthesis of silver nanoparticles (AgNPs) using cannonball leaves. Green synthesized nanoparticles have been characterized by UV-Vis spectroscopy, SEM, TEM, and FTIR. Cannonball leaf broth as a reducing agent converts silver ions to AgNPs in a rapid and ecofriendly manner. The UV-Vis spectra gave surface plasmon resonance peak at 434 nm. TEM image shows well-dispersed silver nanoparticles with an average particle size of 28.4 nm. FTIR showed the structure and respective bands of the synthesized nanoparticles and the stretch of bonds. Green synthesized silver nanoparticles by cannonball leaf extract show cytotoxicity to human breast cancer cell line (MCF-7). Overall, this environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster than or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods, and medical applications.


2019 ◽  
Vol 10 (4) ◽  
pp. 3636-3643
Author(s):  
Hor Jia Wei ◽  
Mohd. Syafiq Awang ◽  
Nor Dyana ◽  
Daruliza Kernain ◽  
Yazmin Bustami

Silver nanoparticles (AgNPs) has long known for its inhibitory and bactericidal effects. However, due to its’ attractive antibacterial property, on-going research with various synthesis strategies actively been conducted. In this study, the synthesis of AgNPs was reported, using a simple chemical reduction method with citrate as the reducing agent TEM was used to characterize the obtained AgNPs. Then, Staphylococcus aureus and Escherichia coli were used to identify the antibacterial activity of AgNPs. The inhibition effects of AgNPs against these two bacteria were observed via disc diffusion, and MIC assays and the effects of AgNPs mode of action on both bacteria were further observed under TEM. The formation of AgNPs at ̴ 400 nm, which is the surface plasmon resonance peak was observed using Uv-Vis spectroscopy. The size of AgNPs mostly in the range of 1-10 nm and their morphology appeared to be spherical. Based on the MIC assay, Escherichia coli exhibit low MIC value with 0.049 mg/ml as compared to Staphylococcus aureus with0.391 mg/ml MIC value; correspond to the effective antibacterial activity by the citrate-reduced AgNPs. Further observation on the bacterial surface structure can be seen with cross-sectional TEM image, and it provides an insight into the AgNPs mechanistic aspects of AgNPs against Staphylococcus aureus and Escherichia coli. Silver nanoparticles have been successfully synthesised using the citrate reduction method. Results obtained in this study thus elucidating promising findings to employed AgNPs as an antibacterial agent, and this composition needs to be further study and develop into an antibacterial agent.


2016 ◽  
Vol 88 (1-2) ◽  
pp. 61-69 ◽  
Author(s):  
Precious Nokwethemba Sibiya ◽  
Thokozani Xaba ◽  
Makwena Justice Moloto

AbstractIn this work silver nanoparticles (AgNPs) have been prepared from silver nitrate (AgNO3) precursor using a green synthesis method at room temperature. Starch with its abundance of hydroxyl groups and its biocompatibility was used as a capping and reducing agent. The formation of AgNPs was confirmed by absorption spectroscopy with the surface plasmon resonance peak at 400 nm. The sharp reflection at (111), (200), (220) and (311) was observed by powder X-ray diffraction (XRD), which indicated the presence of cubic phase AgNPs. Transmission electron microscopy (TEM) revealed that the average size of AgNPs were between 0.5 and 4 nm with a spherical shape under optimum conditions. The nanoparticles showed a decrease in size with an increase in precursor concentration as well as the increase in capping agent concentration. The nanoparticles also showed to be bactericidal towards the tested Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.


2018 ◽  
Vol 4 (5) ◽  
pp. 503-507
Author(s):  
B. Venkataramana ◽  
S. Siva Sankar ◽  
A. Saikumar ◽  
B. Vijaya Kumar Naidu

In the present work, green synthesis of silver nanoparticles (AgNPs) using a natural phytochemical agent has been described. The aqueous latex from Musa paradisiaca peduncle has been utilized as reducing as well as stabilizing agent. The formation of AgNPs was optimized by varying latex and AgNO3 concentrations and finally reaction time. Ultraviolet-visible spectroscopic analysis showed the surface plasmon resonance peak between 350 and 450 nm confirms the formation of silver nanoparticles. X-ray powder diffraction analysis revealed the crystalline nature of AgNPs, Fourier transform infrared spectroscopy analysis revealed that AgNPs were stabilized by polyphenols and other aromatics present in the Musa Paradisiaca peduncle latex, while X-ray energy dispersive spectroscopy confirms the metallic nature. The field emission scanning electron microscopy and high resolution transmission electron microscopy showed the spherical shape of the particles and size distribution of AgNPs measured by dynamic light scattering which are in the range of 40 to 50 nm. The synthesized AgNPs showed photocatalytic activity on the degradation / removal of the methylene blue dye and the antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus and Klebseilla bacterial species.


2019 ◽  
Author(s):  
Chem Int

Verbena officinalis Linn is a traditionally known medicinal plant which is used against a number of diseases including inflammatory conditions. In this study its antioxidant activity (reducing powers, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities), ferric reduction activity potential (FRAP), total flavonoid concentration and antimicrobial activities of 80%, 90%, 100% methanol and chloroform extracts of V. officinalis Linn root and 90% and100% methanol leaf extracts were determined. Its antioxidant activity increases with increase in amount of extract (10% to 40%v/v). Total flavonoid content (TFC) varied from 73.32±0.002 mgQE/100g of dry weight (90% methanol) to 42.39±0.032 mgQE/100g dry weight (chloroform), 2,2-diphenyl-1-picrylhydrazyl (DPPH), radical scavenging activity (%) was varied between 87.39% (90% methanol) to 45.57% (chloroform) while Ferric reducing antioxidant power was observed between 372.93±0.04 mgAAE/100 g extract (90% methanol) to 129.41±0.026 mgAAE/100 g chloroform in the root extract. The methanolic extract of the leaf showed less antioxidant activity than the methanolic extract of the root. Crude extracts of V. officinalis root showed various degree of antimicrobial activity towards drug resistance microbial pathogens. Growth inhibition tests against bacterial pathogens demonstrated concentration dependence. Moreover, gram positive bacteria were more susceptible to V. officinalis root extract when compared to gram negative bacteria. In general V. officinalis root and leave extracts possess strong antioxidant and antimicrobial activities.


2021 ◽  
Author(s):  
Jelena S. Katanić Stanković ◽  
◽  
Nikola Srećković ◽  
Vladimir Mihailović

In this study, silver nanoparticles (AgNPs) have been synthesized using the aqueous extract of the aerial parts of B. purpurocaerulea, collected in Serbia. B. purpurocaerulea silver nanoparticles (Bp– AgNPs) synthesis was confirmed using UV-Vis spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The biological potential of synthesized Bp-AgNPs was evaluated in vitro using ABTS assay for determining free radical scavenging potential and microdilution method for analysis of antimicrobial properties. Bp-AgNPs showed high antioxidant activity similar to Bp-extract, comparable to BHT. The synthesized nanoparticles exerted remarkable antibacterial effects, with minimal inhibitory concentration (MIC) values below 20 µg/mL. In the case of some bacterial strains, the results of Bp– AgNPs were comparable or similar to standard antibiotic erythromycin. The antifungal activity of Bp– AgNPs was moderate for most of the used strains. Nevertheless, several fungi were resistant to the NPs action, while two tested Penicillium species were extremely sensitive on Bp-AgNPs with MIC lower than 40 µg/mL. The antimicrobial properties of Bp-AgNPs can be useful for the development of new NPs-containing products.


Author(s):  
MONIKA GUPTA

Objective: This research work develops an approach to synthesize silver nanoparticles (AgNPs) by reduction of leaf extract of Catharanthus roseus plant. This study produces synthesized nanoparticles that have process-controlled attributes which make their antibiotic action highly efficient. These attributes include smaller size, proper morphology, uniform dispersion, metal ion content, and formation of functional groups. By optimizing the reduction process parameters, AgNPs gain the desired properties.  Methods: The biosynthesis of AgNPs process was performed using reaction of 10% (w/v) C. roseus leaf extract with AgNO3. The optimum conditions and concentration used for synthesis of nanoparticles were: 1 mM AgNO3, pH 5, and temperature 80°C with an incubation time of 72 h. All the above parameters were analyzed by ultraviolet-visible spectrophotometer with the surface plasmon resonance peak obtained at 440 nm. Results: Various characterization techniques were performed, namely, scanning electron microscopy, energy-dispersive X-ray, transmission electron microscopy, photoluminescence study, X-ray diffraction spectroscopy, Fourier transform infrared, dynamic light scattering, and atomic force microscopy. The results obtained from characterization confirmed the spherical morphology of the nanoparticles with size between 50 and 87 nm. In the current investigation, the antimicrobial activity of biosynthesized AgNPs was also determined using minimum inhibitory concentration and zone of inhibition methods against six different bacteria at different doses of AgNPs (100, 150, and 200 μg/ml) alone and also in combination with antibiotic-streptomycin. Conclusion: The results revealed that high concentration of AgNPs inhibits the bacterial growth. Furthermore, AgNPs revealed much stronger antibacterial action in synergy with streptomycin against antibiotic-resistant bacteria.


2020 ◽  
Vol 38 ◽  
Author(s):  
M. AKBAR ◽  
I.N. SHERAZI ◽  
M.S. IQBAL ◽  
T. KHALIL ◽  
H.M. WAQAS

ABSTRACT: In the present study, antibacterial and antioxidant [1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity] activities of a weed, slender amaranth (Amaranthus viridis L.) were investigated. Extracts of different plant parts were prepared in n-hexane, chloroform and ethyl acetate. Antibacterial activity was measured by using 100 mg mL-1 concentration extracts against 4 deadly phytopathogenic bacterial species viz. Pseudomonas syringae Van Hall, Ralstonia solanacearum Smith, Erwinia carotovora (Jones), Holland and Xanthomonas axonopodis Hasse. In antioxidants assays, 10, 20 and 30 mg mL-1 extracts were used keeping DPPH as control. In these bioassays, ethyl acetate fraction of A. viridis leaf exhibited the best antibacterial and antioxidants activity. Ethyl acetate leaf fraction showed the highest inhibition zone diameter (IZD) where it caused 21 mm IZD against P. syringae and 19 mm IZD against E. carotovora. This extract also showed 22, 52 and 84% antioxidant activity at 10, 20 and 30 mg mL-1 concentrations, respectively. Previously there is no report available that describes antibacterial activity of root extract of A. viridis against P. syringae. Moreover, antioxidant activity of stem and root extracts in n-hexane, chloroform and ethyl acetate was investigated first time in the world. It was concluded that the biological activities observed during the present investigation may be due to the presence of bioactive constituents that can be harnessed as natural antibacterials and antioxidants.


Sign in / Sign up

Export Citation Format

Share Document