scholarly journals Changes in Physicochemical Properties and Biological Activities of Kohlrabi (Brassica oleracea var. gongylodes) according to Storage Conditions

2021 ◽  
Vol 50 (7) ◽  
pp. 699-706
Author(s):  
Su Hyeong Heo ◽  
Kyung-Hwan Boo ◽  
Sang-Heon Han ◽  
Sung-Soo Park ◽  
Chang Sook Kim
2018 ◽  
Vol 18 (9) ◽  
pp. 797-807 ◽  
Author(s):  
Paula dos Passos Menezes ◽  
Francielly de Oliveira Araujo ◽  
Tatianny Araujo Andrade ◽  
Igor Araujo Santos Trindade ◽  
Heitor Gomes de Araujo-Filho ◽  
...  

Background: Some research studies have shown that Lippia pedunculosa essential oil (EOLP) has interesting biological activities. However, its low water solubility is the main challenge to achieve its therapeutic potential. In this context, Cyclodextrins (CDs) have been widely used in order to overcome this problem due to your capability to improve the physicochemical properties of drugs. Objective: In this perspective, the main goal of this study was to investigate how the improvement of the physicochemical properties of inclusion complexes (EOLP and β-CD) enhance the antinociceptive effect in mice. Methods: To achieve that, we prepared samples by Physical Mixture (PM), Paste Complexation (PC) and Slurry Complexation (SC) methods, followed by their physicochemical characterization. In addition, it was evaluated if the use of β-CD enhances the antinociceptive effect of EOLP in mice. Results: The analysis showed that rotundifolone (72.02%) was the major compound of EOLP and we found out based on DSC results that β-CD protected it from oxidation. In addition, TG techniques demonstrated that the best inclusion methods were PC and SC, due to their greater weight loss (10.8 and 11.6%, respectively) in the second stage (171-312°C), indicating that more complexed oil was released at the higher temperature than oil free. Other characteristics, such as changes in the typical crystalline form, and reduced particle size were observed by SEM and laser diffraction, respectively. The SC was the most effective complexation method, once the presence of rotundifolone was detected by FTIR. Based on that, SC method was used in all mice tests. In this regard, the number of paw licks was reduced for both compounds (all doses), but EOLP was more effective in reducing the nociceptive behavior. Conclusion: Therefore, CDs seem not to be a good tool to enhance the pharmacological properties of EOs rich in peroxide compounds such as rotundifolone.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 374
Author(s):  
Teresa Szczęsna ◽  
Ewa Waś ◽  
Piotr Semkiw ◽  
Piotr Skubida ◽  
Katarzyna Jaśkiewicz ◽  
...  

The aim of this study was to determine the influence of storage temperature and time on physicochemical parameters of starch syrups recommended for the winter feeding of bee colonies. The studies included commercially available three starch syrups and an inverted saccharose syrup that were stored at different temperatures: ca. 20 °C, 10–14 °C, and ca. 4 °C. Physicochemical parameters of fresh syrups (immediately after purchase) and syrups after 3, 6, 9, 12, 15, 18, 21, and 24 months of storage at the abovementioned temperatures were measured. It was observed that the rate of unfavorable changes in chemical composition of starch syrups and the inverted saccharose syrup, mainly the changes in the 5-hydroxymethylfurfural (HMF) content, depended on the type of a syrup and storage conditions (temperature, time). Properties of tested starch syrups intended for winter feeding of bees stored at ca. 20 °C maintained unchanged for up to 6 months, whereas the same syrups stored at lower temperatures (10–14 °C) maintained unchanged physicochemical parameters for about 12 months. In higher temperatures, the HMF content increased. To date, the influence of this compound on bees has not been thoroughly investigated.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 604
Author(s):  
Liyan Wang ◽  
Liang Lei ◽  
Kang Wan ◽  
Yuan Fu ◽  
Hewen Hu

Active films based on carboxymethyl chitosan incorporated corn peptide were developed, and the effect of the concentration of corn peptide on films was evaluated. Physicochemical properties of the films, including thickness, opacity, moisture content, color, mechanical properties, water vapor permeability, and oil resistance, were measured. Biological activities of the films, including the antioxidant and antibacterial activities, were characterized in terms of 2, 2-diphenyl-1-picrylhydrazyl free radical scavenging activity, reducing power, the total antioxidant activity, and the filter disc inhibition zone method. The results indicated that the incorporation of corn peptide caused interactions between carboxymethyl chitosan and corn peptide in Maillard reaction and gave rise to the films light yellow appearance. Compared with the Control, the degree of glycosylation, browning intensity, thickness, opacity, tensile strength, antioxidant activity, and antibacterial activity of films were increased, but the elongation, vapor permeability, and oil resistance of films were decreased. The films based on corn peptide and carboxymethyl chitosan can potentially be applied to food packaging.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1049 ◽  
Author(s):  
Rosalía Rodríguez-Dorado ◽  
Clara López-Iglesias ◽  
Carlos García-González ◽  
Giulia Auriemma ◽  
Rita Aquino ◽  
...  

Processing and shaping of dried gels are of interest in several fields like alginate aerogel beads used as highly porous and nanostructured particles in biomedical applications. The physicochemical properties of the alginate source, the solvent used in the gelation solution and the gel drying method are key parameters influencing the characteristics of the resulting dried gels. In this work, dried gel beads in the form of xerogels, cryogels or aerogels were prepared from alginates of different molecular weights (120 and 180 kDa) and concentrations (1.25, 1.50, 2.0 and 2.25% (w/v)) using different gelation conditions (aqueous and ethanolic CaCl2 solutions) and drying methods (supercritical drying, freeze-drying and oven drying) to obtain particles with a broad range of physicochemical and textural properties. The stability of physicochemical properties of alginate aerogels under storage conditions of 25 °C and 65% relative humidity (ICH-climatic zone II) during 1 and 3 months was studied. Results showed significant effects of the studied processing parameters on the resulting alginate dried gel properties. Stability studies showed small variations in aerogels weight and specific surface area after 3 months of storage, especially, in the case of aerogels produced with medium molecular weight alginate.


Nova Scientia ◽  
2020 ◽  
Vol 12 (24) ◽  
Author(s):  
Rey David Vargas Sánchez ◽  
Evelin Martínez Benavidez ◽  
Javier Hernández ◽  
Gastón Ramón Torrescano Urrutia ◽  
Armida Sánchez Escalante

In this study the effect of pollen source (mesquite and catclaw) on the sensory characteristics (appearance, color, aroma, taste, consistency and visible impurities), and physicochemical properties of raw propolis, and the phenolic content and biological activities of propolis extracts (PEs) was determined. The phenolic composition of PEs was determined by the total phenolic (TPC), flavone and flavonol (FFC), and flavanone and dihydroflavonol content (FDC). The individual phenolic components were analyzed by HPLC-DAD. The antioxidant activity was determined by the ferric-reducing power (FRAP) and free-radical scavenging activity (FRS). The antibacterial activity was evaluated against Gram-positive (Staphylococcus aureus and Listeria innocua) and Gram-negative (Echerichia coli and Salmonella thyphimurium) bacteria. The results showed that sensory characteristic and physicochemical properties of mesquite and catclaw propolis complied with international quality regulations. Fifteen phenolic compounds were identified, of which pinocembrin, naringenin, galangin, chrysin and quercetin were found a high concentration (> 3 mg/g). Mesquite propolis had the highest phenolic content (TFC and FDC), as well as antioxidant activity (> 2.5 mg Fe (II) equivalent/g; > 40% of DPPH radical inhibition) and antibacterial activity against Gram-positive bacterias in the order S. aureus > L. innocua (> 50% of inhibition for both bacterias at 500 µg/mL). These results indicating that pollen source affect the sensory characteristics and physicochemical properties of propolis, as well as the biological activity of their extracts.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Driss Ousaaid ◽  
Hamada Imtara ◽  
Hassan Laaroussi ◽  
Badiaa Lyoussi ◽  
Ilham Elarabi

Vinegar is a natural product rich in bioactive compounds such as phenols, flavonoids, and organic acids. Several factors affect the quality of vinegars such as apple origin, environmental conditions, production methods, processing, and storage conditions. We investigated the quality of apple vinegars as well as their physicochemical properties and the antioxidant and antibacterial activities of vinegars collected from different areas in Morocco. For physicochemical properties, the outcomes showed the following values: pH (3.18–3.83), electrical conductivity (2.11–2.90), acidity (0.24–5.6), Brix (3.25–6), and density (1.0123–1.0233). The polyphenols content of samples was 68.91 mg AG/100 mL in sample S6 as the minimum value and 147.54 mg AG/100 mL in sample S2 as the maximum value. The best ability to scavenge the DPPH radical was observed in sample S3 (IC50 = 0.45 ± 0.013 µL/mL). Sample S2 showed moderate antibacterial effect against microorganisms tested with MICs ranging from 0.78 µL/mL to 1.125 µL/mL and with a diameter of inhibition ranging from 15.65 mm to 27.65 mm. In addition, a strong correlation was observed between the antibacterial activity of vinegars and physicochemical parameters (pH and total acidity). These outcomes have shown that our vinegar samples are an excellent source of bioactive compounds with potent antioxidant and antibacterial potentials.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 443 ◽  
Author(s):  
Lucia Ragasová ◽  
Eliška Peňázová ◽  
Filip Gazdík ◽  
Jakub Pečenka ◽  
Jana Čechová ◽  
...  

Changes in the bacterial spectrum of cabbage heads after storage under commonly used storage conditions were examined in this study. Cabbage seeds (Brassica oleracea var. capitata L.) were artificially inoculated with X. campestris pv. campestris (Xcc), a serious pathogen of cruciferous plants causing black rot. Isolation of bacterial cultures from Xcc-inoculated and non-inoculated cabbage heads were carried out in two time points—at the day of harvest and after four months of storage. According to our previous research and literature reports, the most frequent genera of bacteria were chosen for PCR testing, i.e., Bacillus cereus group, Bacillus subtilis group, Pseudomonas sp., and X. campestris pv. campestris. A few of the obtained bacterial cultures were negative for the four above-mentioned species. In those, other bacteria were identified by 16S rRNA sequencing. In both Xcc-inoculated and non-inoculated cabbage heads, changes of the bacterial spectrum over time were observed. The severity of Xcc infection of heads increased after four months of storage. Bacillus species represented the most frequently occurring bacterial genus. The presence of the Bacillus subtilis group increased significantly after storage in non-inoculated cabbage heads. The minor part of the other genera identified by sequencing in the first sampling were not detected in the stored cabbage heads. This was associated with a possible antagonistic behavior of Pseudomonas sp. and Bacillus sp.


Sign in / Sign up

Export Citation Format

Share Document