The Effect of Addition of Salinized Polypropylene Fibers and Hydroxy Apatite Macro Fillers on Some Mechanical Properties of Clear Heat Cured Acrylic before and after Artificial Aging

2013 ◽  
Vol 24 (6) ◽  
pp. 599-604 ◽  
Author(s):  
Andrea Candido dos Reis ◽  
Denise Tornavoi de Castro ◽  
Marco Antonio Schiavon ◽  
Leandro Jardel da Silva ◽  
Jose Augusto Marcondes Agnelli

The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, p<0.0001) and compressive strength (F=40.31, p<0.0001), but AAA did not affect the properties (surface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.


2016 ◽  
Vol 711 ◽  
pp. 488-495
Author(s):  
Hong Yan Chu ◽  
Jin Yang Jiang ◽  
Wei Sun ◽  
Ming Zhong Zhang

Siliceous concrete (SC) is applied in European Pressurized Water Reactor that is a key component of the third generation nuclear power plant. This paper investigates the mechanical properties and damage evolution of SC (with and without polypropylene fibers) exposed to high temperatures. The mass loss, compressive strength, splitting tensile strength and spalling sensitivity of SC before and after being heated to 200, 400, 600, 800, and 1000 °C are investigated. The ultrasonic testing technique was used to assess the thermal damage, by evaluating the variations of the ultrasonic wave velocity (UWV) for different temperature levels. According to the available literature, a new relationship between damage and UWV was proposed to establish a damage evolution model of SC. The results indicated that: (a) specimens without polypropylene (PP) fibers suffered severe spalling in the range 380-400°C and 470-510°C, while no spalling took place in the specimens with PP fibers in the whole range 25-1000°C; (b) the damage evolution with and without polypropylene fibers was similar, and could adequately be described by means of a Weibull distribution model.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2236 ◽  
Author(s):  
Shixiong Sun ◽  
Song Ma ◽  
Benbo Zhao ◽  
Guangpu Zhang ◽  
Yunjun Luo

The safe storage time for double base propellant (DBP or DB propellant) with stabilizers could usually be calculated to be greater than 40 years. However, the actual service life is far below that, which is largely caused by the decline of propellant mechanical performance. In this work polytetrafluoroethylene (PTFE) was introduced into the double base propellant formula as an additive. The tensile properties of this propellant before and after artificial aging were determined. The evaporation and diffusion characteristics of nitroglycerin (NG) in propellant were evaluated by thermogravimetry analysis (TGA). The results showed that mechanical properties of propellant were improved due to PTFE, especially for elongation at −40 °C, which was greatly increased by 115%. Moreover, the results of TGA showed that NG migration was reduced due to PTFE, which delayed the decline of propellant mechanical performance during aging. The reduction in elongation at −40 °C caused by aging was decreased by 68.5% for PTFE modified DBP. Enhanced mechanical properties and reduced NG migration could potentially prolong propellant service life.


2012 ◽  
Vol 529-530 ◽  
pp. 229-232
Author(s):  
Ryo Akatsuka ◽  
Ken Matsumura ◽  
Miyoko Noji ◽  
Chihiro Nishikawa ◽  
Kei Sato ◽  
...  

This study aimed to create a thick hydroxyapatite (HAp) film on the surface of a human tooth by using a newly developed powder jet deposition (PJD) device for dental handpieces, and sought to examine the microstructural and mechanical properties of the resulting HAp film. The film was evaluated on three-dimensional view, surface roughness, Vickers hardness, and bonding strength before and after artificial aging through thermal cycling (555°C) for 500 cycles (30 sec for each cycle, 20 sec of dwell time).The HAp particles in the deposited film were densely packed, and the HAp films three-dimensional microstructure and its rough surface were maintained after thermal cycling. There was no significant difference in either the HAp films Vickers hardness or the bonding strength between the film and the enamel substrate before and after thermal cycling. The HAp films created in this study demonstrated excellent microstructural and mechanical properties even after the application of thermal stress. We demonstrated the possibility of using a new type of powder jet deposition (PJD) method we developed to form a new type of interface between the tooth and biomaterials. Consequently, we propose the use of this method in new dental treatments.


2013 ◽  
Vol 465-466 ◽  
pp. 881-885
Author(s):  
Rosli Ahmad ◽  
Samir Sani Abdulmalik

This work studies the effect of a post-weld heat treatment (PWHT) on the mechanical and microstructure properties of an AA6061 sample welded using Tungsten Inert Gas (TIG) method. TIG method is comparatively flexible and has good economy. The welded samples were divided into as-welded and PWHTs samples. The PWHTs samples were solution heat treatment, water quenching and artificial aging. Both welded samples were cut according to the ASTM E8M-04 standard to obtain the tensile strength and the elongation of the joints. The failure pattern of the tensile tested specimens was analysed using scanning electron microscopy (SEM). A Vickers microhardness testing machine was used to measure the hardness across the joints. From the results, the PWHTs were able to enhance the mechanical properties and microstructure characteristics of the AA6061 joints welded by the TIG method.


2018 ◽  
Vol 69 (05) ◽  
pp. 381-389
Author(s):  
MENGÜÇ GAMZE SÜPÜREN ◽  
TEMEL EMRAH ◽  
BOZDOĞAN FARUK

This study was designed to explore the relationship between sunlight exposure and the mechanical properties of paragliding fabrics which have different colors, densities, yarn counts, and coating materials. This study exposed 5 different colors of paragliding fabrics (red, turquoise, dark blue, orange, and white) to intense sunlight for 150 hours during the summer from 9:00 a.m. to 3:00 p.m. for 5 days a week for 5 weeks. Before and after the UV radiation aging process, the air permeability, tensile strength, tear strength, and bursting strength tests were performed. Test results were also evaluated using statistical methods. According to the results, the fading of the turquoise fabric was found to be the highest among the studied fabrics. It was determined that there is a significant decrease in the mechanical properties of the fabrics after sunlight exposure. After aging, the fabrics become considerably weaker in the case of mechanical properties due to the degradation in both the dyestuff and macromolecular structure of the fiber


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Przemysław Snopiński ◽  
Mariusz Król ◽  
Marek Pagáč ◽  
Jana Petrů ◽  
Jiří Hajnyš ◽  
...  

AbstractThis study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.


Sign in / Sign up

Export Citation Format

Share Document