scholarly journals Waste are purifying waste.

2020 ◽  
Vol 12 (3-2020) ◽  
pp. 15-21
Author(s):  
Marina V. Maslova ◽  
◽  
Natalia V. Mudruk ◽  

Cost-effective and eco-friendly methods of novel sorbentproductionbased on a Ti, Ca and Mg phosphates have been carried out. The solid precursors were ammonium titanyl sulfate and calcined dolomite, which were used as titanium, calcium, and magnesium sources. The heterogeneous synthesis procedure in-cludes stepwise interaction between solid precursors and liquid phosphorus-containing agents. In mech-anochemical way to obtain the sorbent was usedonly solid reactants. Synthesiswas carriedout in a plan-etary ball mill. The final product wasa composite material, whichconsistsof the following components: TiO(OH)H2PO4·H2O, Ti(HPO4)2·H2O, CaHPO4·2H2O, MgНPO4·3H2O, and NH4MgPO4·6H2O. The new sorbent shows high sorption ability towards radionuclides in multicomponent liquid radioactive waste (LRW) sys-tems. Purification effect is based on both precipitation and ion exchange mechanism.

Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 175
Author(s):  
Sang-Eun Jo ◽  
Jung-Weon Choi ◽  
Sang-June Choi

Mag@silica-Ag composite has a high sorption ability for I− in aqueous solution due to its high surface area and strong affinity for the studied anion. The material adsorbed I− rapidly during the initial contact time (in 45 min, η = 80%) and reached adsorption equilibrium after 2 h. Moreover, mag@silica-Ag proved to selectively remove I− from a mixture of Cl−, NO3− and I−. The adsorption behavior fitted the Langmuir isotherm perfectly and the pseudo-second-order kinetic model. Based on the Langmuir isotherm, the maximum adsorption capacity of mag@silica-Ag was 0.82 mmol/g, which is significantly higher than previously developed adsorbents. This study introduces a practical application of a high-capacity adsorbent in removing radioactive I− from wastewaters.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1422
Author(s):  
Viktor V. Revin ◽  
Alexander V. Dolganov ◽  
Elena V. Liyaskina ◽  
Natalia B. Nazarova ◽  
Anastasia V. Balandina ◽  
...  

Currently, there is an increased demand for biodegradable materials in society due to growing environmental problems. Special attention is paid to bacterial cellulose, which, due to its unique properties, has great prospects for obtaining functional materials for a wide range of applications, including adsorbents. In this regard, the aim of this study was to obtain a biocomposite material with adsorption properties in relation to fluoride ions based on bacterial cellulose using a highly productive strain of Komagataeibacter sucrofermentans H-110 on molasses medium. Films of bacterial cellulose were obtained. Their structure and properties were investigated by FTIR spectroscopy, NMR, atomic force microscopy, scanning electron microscopy, and X-ray structural analysis. The results show that the fiber thickness of the bacterial cellulose formed by the K. sucrofermentans H-110 strain on molasses medium was 60–90 nm. The degree of crystallinity of bacterial cellulose formed on the medium was higher than on standard Hestrin and Schramm medium and amounted to 83.02%. A new biocomposite material was obtained based on bacterial cellulose chemically immobilized on its surface using atomic-layer deposition of nanosized aluminum oxide films. The composite material has high sorption ability to remove fluoride ions from an aqueous medium. The maximum adsorption capacity of the composite is 80.1 mg/g (F/composite). The obtained composite material has the highest adsorption capacity of fluoride from water in comparison with other sorbents. The results prove the potential of bacterial cellulose-based biocomposites as highly effective sorbents for fluoride.


2002 ◽  
Vol 49 (3-4) ◽  
pp. 75-80 ◽  
Author(s):  
Dejan Markovic

Evaluation o f cytotoxicity is a first step in assessment of dental materials biocompatibility. Necessity for unique criteria in researches resulted in international standard methodology (ISO). The aim of this study was to assess the cytotoxicity of four restorative materials (three glas ionomer cements and one composite material) and to define adventages and disadventages of common ISO methodology for evaluation of this aspect of dental materials biocompatibility. Research was designed according to ISO/TC 106/1995 and ISO/ 10993-5/1994 methodology. Materials used in this investigation were Fuji IILC (GC), Vitiemer (3M), Ionosit fill (DMG-Hamburg), Luxat (DMG-Hamburg). Evaluation of cytotoxicity was carried out on standardized Human Diploid Cell Lung WI-38. Obtained results showed expressive cytotoxic effect of all investigated materials without statisticaly significant difference. Estimation of material biocompatibility and assessment of obtained results can be made only after establishment of correlation with test results. Common ISO methodology is simple for conductance and reproduction, and use of cell cultures in researches is painless, cost effective and without moral or ethical dilemma.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3866
Author(s):  
Hojung Choi ◽  
Youngsik Eom ◽  
Sanghwa Lee ◽  
Sang Youl Kim

Micrometer-sized hyperbranched poly(amidoamine) (hPAMAM) particles are prepared with a simple A2B3 type Aza–Michael addition reaction between aminoethylpiperazine (AEP) and methylenebisacrylamide (MBA) in an inverse suspension polymerization condition. The synthesized particles exhibited surprisingly high Cu2+ sorption capacity (0.223g/g) for a solid-type absorbent. In addition to the high sorption ability of the particle, its simple synthetic process and convenience, due to its micrometer-sized spherical shape and recyclability, make it a practical and attractive absorbent for heavy metal ion removal from aqueous solutions.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1051 ◽  
Author(s):  
Tomasz Kukulski ◽  
Stanisław Wacławek ◽  
Daniele Silvestri ◽  
Kamil Krawczyk ◽  
Vinod V. T. Padil ◽  
...  

Over the years, polyaniline (PANI) has received enormous attention due to its unique properties. Herein, it was chosen to develop a new polymeric composite material: reduced graphene oxide/polyaniline (rGO/PANI). The composite was prepared by a simple and cost-effective fabrication method of formation by mixing and sonication in various conditions. The obtained materials were characterized and identified using various techniques such as scanning electron microscopy (SEM), Raman and ATR–FTIR spectroscopy, and X-ray diffraction (XRD). The objective of the paper was to confirm its applicability for the removal of contaminants from water. Water could be contaminated by various types of pollutants, e.g., inorganics, heavy metals, and many other industrial compounds, including dyes. We confirmed that the Acid Blue 129 dyes can be substantially removed through adsorption on prepared rGO/PANI. The adsorption kinetic data were modeled using the pseudo-first-order and pseudo-second-order models and the adsorption isotherm model was identified.


2018 ◽  
Vol 6 (22) ◽  
pp. 10320-10330 ◽  
Author(s):  
Bingnan Mu ◽  
Wei Li ◽  
Helan Xu ◽  
Lan Xu ◽  
Yiqi Yang

High amorphousness, large porosity and good mechanical properties endow fibrous matrices with high sorption ability and reusability.


Sign in / Sign up

Export Citation Format

Share Document