scholarly journals Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

2021 ◽  
Vol 12 ◽  
pp. 1021-1033 ◽  
Author(s):  
Maximilian Joschko ◽  
Franck Yvan Fotue Wafo ◽  
Christina Malsi ◽  
Danilo Kisić ◽  
Ivana Validžić ◽  
...  

Sb2S3 is a promising nanomaterial for application in solar cells and in the fields of electronics and optoelectronics. Herein, Sb2S3 nanoparticles were prepared via the hot-injection approach. In contrast to earlier work, the reaction temperature was decreased to 150 °C so that the reaction was slowed down and could be stopped at defined reaction stages. Thereby, the formation mechanism of the nanomaterial and the associated kinetics could be revealed. Based on morphological and structural analyses, it is suggested that seed particles (type 0) formed immediately after injecting the antimony precursor into the sulfur precursor. These seeds fused to form amorphous nanoparticles (type I) that contained a lower percentage of sulfur than that corresponding to the expected stoichiometric ratio of Sb2S3. The reason for this possibly lies in the formation of an oxygen- or carbon-containing intermediate during the seeding process. Afterward, the type I nanoparticles aggregated into larger amorphous nanoparticles (type II) in a second hierarchical assembly process and formed superordinate structures (type III). This process was followed by the crystallization of these particles and a layer-like growth of the crystalline particles by an Ostwald ripening process at the expense of the amorphous particles. It was demonstrated that the kinetic control of the reaction allowed tuning of the optical band gap of the amorphous nanoparticles in the range of 2.2–2.0 eV. On the contrary, the optical band gap of the crystalline particles decreased to a value of 1.7 eV and remained constant when the reaction progressed. Based on the proposed formation mechanism, future syntheses for Sb2S3 particles can be developed, allowing tuning of the particle properties in a broad range. In this way, the selective use of this material in a wide range of applications will become possible.

2021 ◽  
Author(s):  
Maximilian Joschko ◽  
Franck Yvan Fotue Wafo ◽  
Christina Malsi ◽  
Danilo Kisić ◽  
Ivana Validžić ◽  
...  

Sb2S3 is a promising nanomaterial for application in solar cells and other fields of electronics and optoelectronics. Sb2S3 nanoparticles were prepared via the hot-injection approach. In contrast to earlier work, the reaction temperature was decreased to 150°C, so that the reaction was slowed down and could be stopped at defined reaction stages. Thereby, the formation mechanism of the nanomaterial and the associated kinetics could be revealed. Based on morphological and structural analysis, it is suggested that seed particles (type 0) form immediately after injecting the antimony precursor into the sulfur precursor. These seeds fuse to form amorphous nanoparticles (type I) that contain a lower percentage of sulfur than that corresponding to the expected stoichiometric ratio of Sb2S3. The reason for this possibly lies in the formation of an oxygen- or carbon-containing intermediate during the seeding process. Afterward, the type I nanoparticles aggregate into larger amorphous nanoparticles (type II) in a second hierarchical assembly process and form superordinated structures (type III). This process is followed by the crystallization of these particles and a layer-like growth of the crystalline particles by an Ostwald ripening process at the expense of the amorphous particles. It was demonstrated that the kinetic control of the reaction allows tuning of the optical bandgap of the amorphous nanoparticles in the range of 2.2 – 2.0 eV. On the contrary, the optical bandgap of the crystalline particles decreases to a value of 1.7 eV and remains constant when the reaction progresses. Based on the proposed formation mechanism, future syntheses for Sb2S3 particles can be developed, allowing tuning the particles' properties in a broad range. In this way, the selective use of this material in a wide range of applications will become possible.


2015 ◽  
Vol 3 (37) ◽  
pp. 9620-9630 ◽  
Author(s):  
Ali Haider ◽  
Seda Kizir ◽  
Cagla Ozgit-Akgun ◽  
Eda Goldenberg ◽  
Shahid Ali Leghari ◽  
...  

Hollow cathode plasma assisted atomic layer deposited InxGa1−xN alloys show successful tunability of the optical band gap by changing the In concentration in a wide range.


2015 ◽  
Vol 17 (4) ◽  
pp. 2686-2695 ◽  
Author(s):  
Erin M. Adkins ◽  
J. Houston Miller

The critical PAH size for particle inception in the soot formation mechanism has been defined by correlating the experimentally determined optical band gap with calculated HOMO–LUMO gaps for a range of pericondensed PAHs. The observed optical band gap is consistent with a PAH of about 14 rings.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1158
Author(s):  
Areen A. Bani-Salameh ◽  
A. A. Ahmad ◽  
A. M. Alsaad ◽  
I. A. Qattan ◽  
Ihsan A. Aljarrah

We report the synthesis of hybrid thin films based on polymethyl methacrylate) (PMMA) and polystyrene (PS) doped with 1%, 3%, 5%, and 7% of cerium dioxide nanoparticles (CeO2 NPs). The As-prepared thin films of (PMMA-PS) incorporated with CeO2 NPs are deposited on a glass substrate. The transmittance T% (λ) and reflectance R% (λ) of PMMA-PS/CeO2 NPs thin films are measured at room temperature in the spectral range (250–700) nm. High transmittance of 87% is observed in the low-energy regions. However, transmittance decreases sharply to a vanishing value in the high-energy region. In addition, as the CeO2 NPs concentration is increased, a red shift of the absorption edge is clearly observed suggesting a considerable decrease in the band gap energy of PMMA-PS/CeO2 NPs thin film. The optical constants (n and k) and related key optical and optoelectronic parameters of PMMA-PS/Ce NPs thin films are reported and interpreted. Furthermore, Tauc and Urbach models are employed to elucidate optical behavior and calculate the band gaps of the as-synthesized nanocomposite thin films. The optical band gap energy of PMMA-PS thin film is found to be 4.03 eV. Optical band gap engineering is found to be possible upon introducing CeO2 NPs into PMMA-PS polymeric thin films as demonstrated clearly by the continuous decrease of optical band gap upon increasing CeO2 content. Fourier-transform infrared spectroscopy (FTIR) analysis is conducted to identify the major vibrational modes of the nanocomposite. The peak at 541.42 cm−1 is assigned to Ce–O and indicates the incorporation of CeO2 NPs into the copolymers matrices. There were drastic changes to the width and intensity of the vibrational bands of PMMA-PS upon addition of CeO2 NPs. To examine the chemical and thermal stability, thermogravimetric (TGA) thermograms are measured. We found that (PMMA-PVA)/CeO2 NPs nanocomposite thin films are thermally stable below 110 °C. Therefore, they could be key candidate materials for a wide range of scaled multifunctional smart optical and optoelectronic devices.


2006 ◽  
Vol 13 (05) ◽  
pp. 577-583
Author(s):  
M. RUSOP ◽  
S. ABDULLAH ◽  
S. ADHIKARI ◽  
A. M. M. OMER ◽  
T. SOGA ◽  
...  

Amorphous carbon nitride ( a - CN x) films were deposited on quartz substrates by newly developed surface wave microwave plasma chemical vapor deposition (SWMP-CVD) of alcohol camphoric carbon plasma source at room temperature. Then the a - CN x films were heat-treated at various annealing temperatures (AT) in the 100–500°C range. The effects of heat treatment on the structural modifications were studied by Visible-Raman spectroscopy through the evolution of D and G peaks. The spectral evolution observed on heat-treated a - CN x shows progressive formation of crystallites. Raman spectra have revealed the amorphous structure of as-grown a - CN x films and the growth of nanocrystallinity upon increase of AT. These structural changes were further correlated with optical band gap and fraction of sp3 bonded carbons present, derived respectively from the UV-visible and photoelectron spectroscopy. The wide range of optical absorption coefficient characteristics is observed depending on the AT. The optical band gap of as-grown a - CN x films is found to be approximately 2.8 eV; it gradually decreases to 2.5 eV for the films heat-treated at 300°C and then it decreases rapidly to 0.9 eV at 500°C. The results obtained are discussed and compared with the literatures.


2015 ◽  
Vol 7 (3) ◽  
pp. 1923-1930
Author(s):  
Austine Amukayia Mulama ◽  
Julius Mwakondo Mwabora ◽  
Andrew Odhiambo Oduor ◽  
Cosmas Mulwa Muiva ◽  
Boniface Muthoka ◽  
...  

 Selenium-based chalcogenides are useful in telecommunication devices like infrared optics and threshold switching devices. The investigated system of Ge5Se95-xZnx (0.0 ≤ x ≤ 4 at.%) has been prepared from high purity constituent elements. Thin films from the bulk material were deposited by vacuum thermal evaporation. Optical absorbance measurements have been performed on the as-deposited thin films using transmission spectra. The allowed optical transition was found to be indirect and the corresponding band gap energy determined. The variation of optical band gap energy with the average coordination number has also been investigated based on the chemical bonding between the constituents and the rigidity behaviour of the system’s network.


Author(s):  
А.Р. Зарипова ◽  
Л.Р. Нургалиева ◽  
А.В. Тюрин ◽  
И.Р. Минниахметов ◽  
Р.И. Хусаинова

Проведено исследование гена интерферон индуцированного трансмембранного белка 5 (IFITM5) у 99 пациентов с несовершенным остеогенезом (НО) из 86 неродственных семей. НО - клинически и генетически гетерогенное наследственное заболевание соединительной ткани, основное клиническое проявление которого - множественные переломы, начиная с неонатального периода жизни, зачастую приводящие к инвалидизации с детского возраста. К основным клиническим признакам НО относятся голубые склеры, потеря слуха, аномалия дентина, повышенная ломкость костей, нарушения роста и осанки с развитием характерных инвалидизирующих деформаций костей и сопутствующих проблем, включающих дыхательные, неврологические, сердечные, почечные нарушения. НО встречается как у мужчин, так и у женщин. До сих пор не определена степень генетической гетерогенности заболевания. На сегодняшний день известно 20 генов, вовлеченных в патогенез НО, и исследователи разных стран продолжают искать новые гены. В последнее десятилетие стало известно, что аутосомно-рецессивные, аутосомно-доминантные и Х-сцепленные мутации в широком спектре генов, кодирующих белки, которые участвуют в синтезе коллагена I типа, его процессинге, секреции и посттрансляционной модификации, а также в белках, которые регулируют дифференцировку и активность костеобразующих клеток, вызывают НО. Мутации в гене IFITM5, также называемом BRIL (bone-restricted IFITM-like protein), участвующем в формировании остеобластов, приводят к развитию НО типа V. До 5% пациентов имеют НО типа V, который характеризуется образованием гиперпластического каллуса после переломов, кальцификацией межкостной мембраны предплечья и сетчатым рисунком ламелирования, наблюдаемого при гистологическом исследовании кости. В 2012 г. гетерозиготная мутация (c.-14C> T) в 5’-нетранслируемой области (UTR) гена IFITM5 была идентифицирована как основная причина НО V типа. В представленной работе проведен анализ гена IFITM5 и идентифицирована мутация c.-14C>T, возникшая de novo, у одного пациента с НО, которому впоследствии был установлен V тип заболевания. Также выявлены три известных полиморфных варианта: rs57285449; c.80G>C (p.Gly27Ala) и rs2293745; c.187-45C>T и rs755971385 c.279G>A (p.Thr93=) и один ранее не описанный вариант: c.128G>A (p.Ser43Asn) AGC>AAC (S/D), которые не являются патогенными. В статье уделяется внимание особенностям клинических проявлений НО V типа и рекомендуется определение мутации c.-14C>T в гене IFITM5 при подозрении на данную форму заболевания. A study was made of interferon-induced transmembrane protein 5 gene (IFITM5) in 99 patients with osteogenesis imperfecta (OI) from 86 unrelated families and a search for pathogenic gene variants involved in the formation of the disease phenotype. OI is a clinically and genetically heterogeneous hereditary disease of the connective tissue, the main clinical manifestation of which is multiple fractures, starting from the natal period of life, often leading to disability from childhood. The main clinical signs of OI include blue sclera, hearing loss, anomaly of dentin, increased fragility of bones, impaired growth and posture, with the development of characteristic disabling bone deformities and associated problems, including respiratory, neurological, cardiac, and renal disorders. OI occurs in both men and women. The degree of genetic heterogeneity of the disease has not yet been determined. To date, 20 genes are known to be involved in the pathogenesis of OI, and researchers from different countries continue to search for new genes. In the last decade, it has become known that autosomal recessive, autosomal dominant and X-linked mutations in a wide range of genes encoding proteins that are involved in the synthesis of type I collagen, its processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells cause OI. Mutations in the IFITM5 gene, also called BRIL (bone-restricted IFITM-like protein), involved in the formation of osteoblasts, lead to the development of OI type V. Up to 5% of patients have OI type V, which is characterized by the formation of a hyperplastic callus after fractures, calcification of the interosseous membrane of the forearm, and a mesh lamellar pattern observed during histological examination of the bone. In 2012, a heterozygous mutation (c.-14C> T) in the 5’-untranslated region (UTR) of the IFITM5 gene was identified as the main cause of OI type V. In the present work, the IFITM5 gene was analyzed and the de novo c.-14C> T mutation was identified in one patient with OI who was subsequently diagnosed with type V of the disease. Three known polymorphic variants were also identified: rs57285449; c.80G> C (p.Gly27Ala) and rs2293745; c.187-45C> T and rs755971385 c.279G> A (p.Thr93 =) and one previously undescribed variant: c.128G> A (p.Ser43Asn) AGC> AAC (S / D), which were not pathogenic. The article focuses on the features of the clinical manifestations of OI type V, and it is recommended to determine the c.-14C> T mutation in the IFITM5 gene if this form of the disease is suspected.


2018 ◽  
Author(s):  
Sherif Tawfik ◽  
Olexandr Isayev ◽  
Catherine Stampfl ◽  
Joseph Shapter ◽  
David Winkler ◽  
...  

Materials constructed from different van der Waals two-dimensional (2D) heterostructures offer a wide range of benefits, but these systems have been little studied because of their experimental and computational complextiy, and because of the very large number of possible combinations of 2D building blocks. The simulation of the interface between two different 2D materials is computationally challenging due to the lattice mismatch problem, which sometimes necessitates the creation of very large simulation cells for performing density-functional theory (DFT) calculations. Here we use a combination of DFT, linear regression and machine learning techniques in order to rapidly determine the interlayer distance between two different 2D heterostructures that are stacked in a bilayer heterostructure, as well as the band gap of the bilayer. Our work provides an excellent proof of concept by quickly and accurately predicting a structural property (the interlayer distance) and an electronic property (the band gap) for a large number of hybrid 2D materials. This work paves the way for rapid computational screening of the vast parameter space of van der Waals heterostructures to identify new hybrid materials with useful and interesting properties.


2020 ◽  
Vol 20 (12) ◽  
pp. 1074-1092 ◽  
Author(s):  
Rammohan R.Y. Bheemanaboina

Phosphoinositide 3-kinases (PI3Ks) are a family of ubiquitously distributed lipid kinases that control a wide variety of intracellular signaling pathways. Over the years, PI3K has emerged as an attractive target for the development of novel pharmaceuticals to treat cancer and various other diseases. In the last five years, four of the PI3K inhibitors viz. Idelalisib, Copanlisib, Duvelisib, and Alpelisib were approved by the FDA for the treatment of different types of cancer and several other PI3K inhibitors are currently under active clinical development. So far clinical candidates are non-selective kinase inhibitors with various off-target liabilities due to cross-reactivities. Hence, there is a need for the discovery of isoform-selective inhibitors with improved efficacy and fewer side-effects. The development of isoform-selective inhibitors is essential to reveal the unique functions of each isoform and its corresponding therapeutic potential. Although the clinical effect and relative benefit of pan and isoformselective inhibition will ultimately be determined, with the development of drug resistance and the demand for next-generation inhibitors, it will continue to be of great significance to understand the potential mechanism of isoform-selectivity. Because of the important role of type I PI3K family members in various pathophysiological processes, isoform-selective PI3K inhibitors may ultimately have considerable efficacy in a wide range of human diseases. This review summarizes the progress of isoformselective PI3K inhibitors in preclinical and early clinical studies for anticancer and other various diseases.


Sign in / Sign up

Export Citation Format

Share Document