Intratibial Osteosarcoma Cell Injection to Generate Orthotopic Osteosarcoma and Lung Metastasis Mouse Models

Author(s):  
Junli Chang ◽  
Fulai Zhao ◽  
Xingyuan Sun ◽  
Xiaoping Ma ◽  
Wenlan Zhi ◽  
...  
2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15503-e15503
Author(s):  
Jun Lin ◽  
Ru Li ◽  
Yujie Huang

e15503 Background: Metastatic breast cancer is a pressing health concern worldwide. Various treatments have been developed but no significant long-term changes in overall survival are observed. Therefore, there is a demand to improve current therapies to treat this disease. Surgical resection of the primary tumors is essential in the treatment. However, accumulating evidence alludes to a role for volatile anesthetics which are used during the surgery in metastatic tumor development, but the mechanism remains largely unknown. We have shown anesthetics exert different effects on lung metastasis in mouse models of breast cancers. This study analyses the effect of general anesthetics in lung microenvironment associated with the increased metastases. Methods: Balb/c mice and NOD-SCID mice were orthotopically implanted with 4T1 cells and MDA-MB-231 cells respectively, in the mammary fat pad to generate primary tumors. Mice were subjected to the tested anesthetic during implantation and/or before and after surgery. Surgical dissection of primary tumor was performed under anesthesia with sevoflurane or an intravenous anesthetic propofol. Survival curve was constructed and analysed. Mice were euthanized to harvest tissues for histology and cell analysis. Results: As we previously reported, surgical dissection of primary tumor in mice under anesthesia with sevoflurane led to significantly more lung metastasis than with propofol in both syngeneic murine 4T1 and xenograft human MDA-MB-231 breast cancer models. Sevoflurane was associated with increased IL6(Li, Huang, & Lin, 2020). Here we show that anesthesia with sevoflurane resulted in changes of stroma composition in the lung, which was reversed by IL6 pathway interruption. Conclusions: Those results contribute to our understanding of effects of sevoflurane on cancer metastasis and suggest a potential therapeutic approach to overcome the risk of general anesthesia. Li, R., Huang, Y., & Lin, J. (2020). Distinct effects of general anesthetics on lung metastasis mediated by IL-6/JAK/STAT3 pathway in mouse models. Nat Commun, 11, 642.


Author(s):  
Weitao Yao ◽  
Xin Wang ◽  
Qiqing Cai ◽  
Songtao Gao ◽  
Jiaqiang Wang ◽  
...  

TRAF4, or tumor necrosis factor receptor-associated factor 4, is overexpressed in several cancers, suggesting a specific role in cancer progression. However, its functions in osteosarcoma are unclear. This study aimed to explore the expression of TRAF4 in osteosarcoma tissues and cells, the correlation of TRAF4 to clinical pathology of osteosarcoma, as well as the role and mechanism of TRAF4 in osteosarcoma metastasis. The protein expression levels of TRAF4 in osteosarcoma tissues and three osteosarcoma cell lines, MG-63, HOS, and U2OS, were assessed. Constructed TRAF4 overexpression vectors and established TRAF4 overexpression of the U2OS cell line. Cell proliferation, cell invasion, protein levels, and TRAF4 phosphorylations were assessed following TRAF4 transfection, as well as the effects of TRAF4 siRNA on cell proliferation and invasion. The results show that TRAF4 protein levels in osteosarcoma tissues were significantly higher than that in normal bone tissues. Importantly, an obvious upregulation of TRAF4 was found in carcinoma tissues from patients with lung metastasis compared with patients without lung metastasis. Consistently, a similar increase in TRAF4 mRNA and protein was also demonstrated in the osteosarcoma cell lines MG-63, HOS, and U2OS compared to normal bone cells, hFOB1.19. When TRAF4 was overexpressed in U2OS cells, cell proliferation was significantly enhanced, accompanied by an increase in Ki67 expression and colony formation. Compared with the control and vector-treated groups, TRAF4 transfection increased the invasion potential of U2OS cells (p<0.05). Interestingly, TRAF4 transfection significantly enhanced the phosphorylation of Akt. After blocking Akt with its specific siRNA, TRAF4-induced cell proliferation and invasion were dramatically attenuated. In summary, our findings demonstrated that TRAF4 enhances osteosarcoma cell proliferation and invasion partially by the Akt pathway. This work suggests that TRAF4 might be an important target in osteosarcoma.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 459 ◽  
Author(s):  
Chia-Chia Chao ◽  
Chiang-Wen Lee ◽  
Tsung-Ming Chang ◽  
Po-Chun Chen ◽  
Ju-Fang Liu

Osteosarcoma, the most common of all bone malignancies, has a high likelihood of lung metastasis. Up until now, the molecular mechanisms involved in osteosarcomas with lung metastases are not clearly understood. Recent observations have shown that the chemokine CXCL1 and its receptor CXCR2 assist with the homing of neutrophils into the tumor microenvironment. Here, we show that the CXCL1/CXCR2 paracrine axis is crucial for lung metastasis in osteosarcoma. In an in vivo lung metastasis model of osteosarcoma, lung blood vessels expressed CXCL1 and osteosarcoma cells expressed the CXCR2 receptor. CXCR2 expression was higher in osteosarcoma cell lines than in normal osteoblast cells. Immunohistochemistry staining of clinical osteosarcoma specimens revealed positive correlations between CXCR2 expression and pathology stage and also vascular cell adhesion molecule 1 (VCAM-1) expression. High levels of CXCL1 secreted by human pulmonary artery endothelial cells (HPAECs) promoted osteosarcoma cell mobility, which was mediated by the upregulation of VCAM-1 expression. When HPAECs-conditioned media was incubated in osteosarcoma cells, we observed that the CXCR2 receptor and FAK/PI3K/Akt/NF-κB signaling cascade were required for VCAM-1 expression. Our findings illustrate a molecular mechanism of lung metastasis in osteosarcoma and indicate that CXCL1/CXCR2 is worth targeting in treatment schemas.


Author(s):  
Sonam Mittal ◽  
Prachi Gupta ◽  
Pradeep Chaluvally-Raghavan ◽  
Sunila Pradeep

2009 ◽  
Vol 32 (2) ◽  
pp. 180 ◽  
Author(s):  
Shen Xu-dong ◽  
Shen Zan ◽  
Zheng Shui-er ◽  
Tang Li-na ◽  
Yu Wen-xi ◽  
...  

Purpose: To determine the prognostic value of the expression of Ezrin, CD44 and Six1 genes in osteosarcoma tissues of Chinese patients. Methods: Fluorescent quantitative real-time PCR was applied to study the mRNA levels of Ezrin, CD44 and Six1 genes in 32 osteosarcoma patient samples and 10 adjacent normal tissues and MG63 osteosarcoma cell lines. The analysis of relationships between pulmonary metastasis and overall survival time were carried out based on the clinical data. Results: mRNA levels of Ezrin and Six1 genes in osteosarcoma tissues were higher than those in adjacent normal tissues (P=0.015, 0.025). The mRNA levels of Ezrin, CD44 and Six1 genes were closely correlated with Enneking GTM clinical staging, while no correlations were demonstrated between the mRNA level of these genes with sex, age, location or pathological types. In addition, we demonstrated that the high mRNA level of Ezrin gene was related to shorter lung metastasis-free and overall survival time of the Chinese patients with osteosarcoma (P < 0.001). Conclusion: Our data suggest that Ezrin, but not CD44 and Six1, could be a prognostic factor and a predictor of potential lung metastasis in osteosarcoma. Further large sample studies need to be done to confirm the potential value of Ezrin as a new therapeutic target.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Han-Soo Kim ◽  
Ha Jeong Kim ◽  
Mi Ra Lee ◽  
Ilkyu Han

Abstract Background Extracellular matrix metalloproteinase inducer (EMMPRIN), a cell-surface glycoprotein, is overexpressed in several cancer types. EMMPRIN induces a metastatic phenotype by triggering the production of matrix metalloproteinase proteins (MMPs) such as MMP1 and MMP2, and vascular endothelial growth factor (VEGF) in cancer cells and the surrounding stromal cells. The purpose of this study was to investigate the expression and role of EMMPRIN in osteosarcoma. Methods The level of EMMPRIN expression was evaluated using reverse transcriptase polymerase chain reaction (RT-PCR) in 6 tumor-derived osteosarcoma cell lines and compared with that in normal osteoblasts. To study the prognostic significance of EMMPRIN expression, immunohistochemistry was carried out in prechemotherapy biopsies of 54 patients. siRNA knockdown of EMMPRIN in SaOS-2 cells was conducted to explore the role of EMMPRIN. To study the role of EMMPRIN in tumor-stromal interaction in MMP production and invasion, co-culture of SaOS-2 cells with osteoblasts and fibroblasts was performed. Osteosarcoma 143B cells were injected into the tail vein of BALB/c mice and lung metastasis was analyzed. Results EMMRIN mRNA expression was significantly higher in 5 of 6 (83%) tumor-derived cells than in MG63 cells. 90% of specimens (50/54) stained positive for EMMPRIN by immunohistochemistry, and higher expression of EMMPRIN was associated with shorter metastasis-free survival (p = 0.023). Co-culture of SaOS-2 with osteoblasts resulted in increased production of pro-MMP2 and VEGF expression, which was inhibited by EMMPRIN-targeting siRNA. siRNA knockdown of EMMPRIN resulted in decreased invasion. EMMPRIN shRNA-transfected 143B cells showed decreased lung metastasis in vivo. Conclusions Our data suggest that EMMPRIN acts as a mediator of osteosarcoma metastasis by regulating MMP and VEGF production in cancer cells as well as stromal cells. EMMPRIN could serve as a therapeutic target in osteosarcoma.


2018 ◽  
Vol 48 (3) ◽  
pp. 1099-1111 ◽  
Author(s):  
Yanqin Zhang ◽  
Qianghua Hu ◽  
Guixin Li ◽  
Lili Li ◽  
Shoulei Liang ◽  
...  

Background/Aims: Gain-of-function of mutant p53 is associated with a high rate of lung metastasis in osteosarcoma. To investigate the mechanism of mutant p53-induced osteosarcoma metastasis, expression array analysis was performed, comparing non-metastatic osteosarcomas from p53+/- mice with metastatic osteosarcomas from p53R172H/+ mice. Onzin (Plac8) was identified as one of the genes upregulated in p53R172H/+ mouse metastatic osteosarcomas. Accordingly, we investigated the role of ONZIN in human osteosarcoma metastasis. Methods: ONZIN function and its downstream targets were examined in osteosarcoma cell lines. Assays related to tumorigenesis and metastasis, including cell migration, invasion, clonogenic survival, and soft agar colony formation, were performed in osteosarcoma cells. Additionally, mouse xenograft models were used to examine the role of ONZIN overpression in tumorigenesis in vivo. Lastly, 87 osteosarcoma patients were recruited to investigate the clinical relevance of ONZIN overexpression in metastasis and prognosis. Results: ONZIN overexpression enhanced osteosarcoma cell proliferation, clonogenic survival, migration, and invasion independent of p53 status. Furthermore, ONZIN overexpression induced CXCL5 upregulation and resulted in increased ERK phosphorylation, which contributed to more aggressive osteosarcoma metastatic phenotypes. More importantly, overexpression of ONZIN in human osteosarcoma patients was closely associated with lung metastasis, poor prognoses, and survival. Conclusions: Overexpression of ONZIN promotes osteosarcoma progression and metastasis, and can serve as a clinical biomarker for osteosarcoma metastasis and prognosis.


Sign in / Sign up

Export Citation Format

Share Document