scholarly journals EMMPRIN expression is associated with metastatic progression in osteosarcoma

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Han-Soo Kim ◽  
Ha Jeong Kim ◽  
Mi Ra Lee ◽  
Ilkyu Han

Abstract Background Extracellular matrix metalloproteinase inducer (EMMPRIN), a cell-surface glycoprotein, is overexpressed in several cancer types. EMMPRIN induces a metastatic phenotype by triggering the production of matrix metalloproteinase proteins (MMPs) such as MMP1 and MMP2, and vascular endothelial growth factor (VEGF) in cancer cells and the surrounding stromal cells. The purpose of this study was to investigate the expression and role of EMMPRIN in osteosarcoma. Methods The level of EMMPRIN expression was evaluated using reverse transcriptase polymerase chain reaction (RT-PCR) in 6 tumor-derived osteosarcoma cell lines and compared with that in normal osteoblasts. To study the prognostic significance of EMMPRIN expression, immunohistochemistry was carried out in prechemotherapy biopsies of 54 patients. siRNA knockdown of EMMPRIN in SaOS-2 cells was conducted to explore the role of EMMPRIN. To study the role of EMMPRIN in tumor-stromal interaction in MMP production and invasion, co-culture of SaOS-2 cells with osteoblasts and fibroblasts was performed. Osteosarcoma 143B cells were injected into the tail vein of BALB/c mice and lung metastasis was analyzed. Results EMMRIN mRNA expression was significantly higher in 5 of 6 (83%) tumor-derived cells than in MG63 cells. 90% of specimens (50/54) stained positive for EMMPRIN by immunohistochemistry, and higher expression of EMMPRIN was associated with shorter metastasis-free survival (p = 0.023). Co-culture of SaOS-2 with osteoblasts resulted in increased production of pro-MMP2 and VEGF expression, which was inhibited by EMMPRIN-targeting siRNA. siRNA knockdown of EMMPRIN resulted in decreased invasion. EMMPRIN shRNA-transfected 143B cells showed decreased lung metastasis in vivo. Conclusions Our data suggest that EMMPRIN acts as a mediator of osteosarcoma metastasis by regulating MMP and VEGF production in cancer cells as well as stromal cells. EMMPRIN could serve as a therapeutic target in osteosarcoma.

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 181
Author(s):  
Francesca Zonta ◽  
Christian Borgo ◽  
Camila Paz Quezada Meza ◽  
Ionica Masgras ◽  
Andrea Rasola ◽  
...  

CK2 is a Ser/Thr protein kinase overexpressed in many cancers. It is usually present in cells as a tetrameric enzyme, composed of two catalytic (α or α’) and two regulatory (β) subunits, but it is active also in its monomeric form, and the specific role of the different isoforms is largely unknown. CK2 phosphorylates several substrates related to the uncontrolled proliferation, motility, and survival of cancer cells. As a consequence, tumor cells are addicted to CK2, relying on its activity more than healthy cells for their life, and exploiting it for developing multiple oncological hallmarks. However, little is known about CK2 contribution to the metabolic rewiring of cancer cells. With this study we aimed at shedding some light on it, especially focusing on the CK2 role in the glycolytic onco-phenotype. By analyzing neuroblastoma and osteosarcoma cell lines depleted of either one (α) or the other (α’) CK2 catalytic subunit, we also aimed at disclosing possible pro-tumor functions which are specific of a CK2 isoform. Our results suggest that both CK2 α and α’ contribute to cell proliferation, survival and tumorigenicity. The analyzed metabolic features disclosed a role of CK2 in tumor metabolism, and suggest prominent functions for CK2 α isoform. Results were also confirmed by CK2 pharmacological inhibition. Overall, our study provides new information on the mechanism of cancer cells addiction to CK2 and on its isoform-specific functions, with fundamental implications for improving future therapeutic strategies based on CK2 targeting.


2020 ◽  
Author(s):  
Guillaume Jacquemin ◽  
Annabelle Wurmser ◽  
Mathilde Huyghe ◽  
Wenjie Sun ◽  
Meghan Perkins ◽  
...  

AbstractTumours are complex ecosystems composed of different types of cells that communicate and influence each other. While the critical role of stromal cells in affecting tumour growth is well established, the impact of mutant cancer cells on healthy surrounding tissues remains poorly defined. Here, we uncovered a paracrine mechanism by which intestinal cancer cells reactivate foetal and regenerative Yap-associated transcriptional programs in neighbouring wildtype epithelial cells, rendering them adapted to thrive in the tumour context. We identified the glycoprotein Thrombospondin-1 (Thbs1) as the essential factor that mediates non-cell autonomous morphological and transcriptional responses. Importantly, Thbs1 is associated with bad prognosis in several human cancers. This study reveals the Thbs1-YAP axis as the mechanistic link mediating paracrine interactions between epithelial cells, promoting tumour formation and progression.


Tumor Biology ◽  
2018 ◽  
Vol 40 (2) ◽  
pp. 101042831875620 ◽  
Author(s):  
Filipa Lopes-Coelho ◽  
Sofia Gouveia-Fernandes ◽  
Jacinta Serpa

The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 144 ◽  
Author(s):  
Zaid Maayah ◽  
Ti Zhang ◽  
Marcus Forrest ◽  
Samaa Alrushaid ◽  
Michael Doschak ◽  
...  

Doxorubicin (DOX) is a very potent and effective anticancer agent. However, the effectiveness of DOX in osteosarcoma is usually limited by the acquired drug resistance. Recently, Vitamin D (Vit-D) was shown to suppress the growth of many human cancer cells. Taken together, we synthesized DOX-Vit D by conjugating Vit-D to DOX in order to increase the delivery of DOX into cancer cells and mitigate the chemoresistance associated with DOX. For this purpose, MG63 cells were treated with 10 µM DOX or DOX-Vit D for 24 h. Thereafter, MTT, real-time PCR and western blot analysis were used to determine cell proliferation, genes and proteins expression, respectively. Our results showed that DOX-Vit D, but not DOX, significantly elicited an apoptotic signal in MG63 cells as evidenced by induction of death receptor, Caspase-3 and BCLxs genes. Mechanistically, the DOX-Vit D-induced apoptogens were credited to the activation of p-JNK and p-p38 signaling pathway and the inhibition of proliferative proteins, p-Akt and p-mTOR. Our findings propose that DOX-Vit D suppressed the growth of MG63 cells by inducing apoptosis while inhibiting cell survival and proliferative signaling pathways. DOX-Vit D may serve as a novel drug delivery approach to potentiate the delivery of DOX into cancer cells.


Cancers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 822 ◽  
Author(s):  
Lena Schulze-Edinghausen ◽  
Claudia Dürr ◽  
Selcen Öztürk ◽  
Manuela Zucknick ◽  
Axel Benner ◽  
...  

Chronic lymphocytic leukemia (CLL) is known for its strong dependency on the tumor microenvironment. We found progranulin (GRN), a protein that has been linked to inflammation and cancer, to be upregulated in the serum of CLL patients compared to healthy controls, and increased GRN levels to be associated with an increased hazard for disease progression and death. This raised the question of whether GRN is a functional driver of CLL. We observed that recombinant GRN did not directly affect viability, activation, or proliferation of primary CLL cells in vitro. However, GRN secretion was induced in co-cultures of CLL cells with stromal cells that enhanced CLL cell survival. Gene expression profiling and protein analyses revealed that primary mesenchymal stromal cells (MSCs) in co-culture with CLL cells acquire a cancer-associated fibroblast-like phenotype. Despite its upregulation in the co-cultures, GRN treatment of MSCs did not mimic this effect. To test the relevance of GRN for CLL in vivo, we made use of the Eμ-TCL1 CLL mouse model. As we detected strong GRN expression in myeloid cells, we performed adoptive transfer of Eμ-TCL1 leukemia cells to bone marrow chimeric Grn−/− mice that lack GRN in hematopoietic cells. Thereby, we observed that CLL-like disease developed comparable in Grn−/− chimeras and respective control mice. In conclusion, serum GRN is found to be strongly upregulated in CLL, which indicates potential use as a prognostic marker, but there is no evidence that elevated GRN functionally drives the disease.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 26-26
Author(s):  
Cesarina Giallongo ◽  
Mariarita Spampinato ◽  
Enrico La Spina ◽  
Nunziatina Laura Parrinello ◽  
Lucia Longhitano ◽  
...  

Introduction Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by hematopoietic/stem cell-derived clonal myeloproliferation leading to cytopenia/cytosis, splenomegaly and bone marrow (BM) fibrosis. The alteration of haematopoiesis associted with BM fibrosis is deeply associated with profound modifications of the BM microenvironment, as a consequence of a defective balance between the vascular niche and the endosteal niche, associated to megakaryocytes, endothelial and mesenchymal stromal cells (MSC) dysfunction through the production of a variety of profibrotic, angiogenic, and pro-inflammatory cytokines, including megakaryocyte-derived PDGF, TGF-beta and osteoprotegerin, IL-6, PDGF, RANTSs, BMP-2, and which can trigger auto-immune mechanisms, chronic inflammation and oxidative stress status. It is well-known that oncogenic lesions can switch the bioenergetics of malignant cells from OXPHOS to glycolysis (Warburg effect) with lactate production, a phenomenon clinically relevant, particularly in PMF where the amount of the enzyme lactate dehydrogenase (LDH) is an established biomarker of leucocyte turnover and an independent biomarker of overall and leukemia-free survival. The shuttling of the main LDH metabolite lactate is implicated in the interplay of cancer cells with neighboring stromal cells which become glycolytic and export lactate. In turn, lactate is taken up by cancer cells and used for oxidative metabolism, to drive angiogenesis in endothelial cells and to inhibit T- cell function. Moreover, there are evidences that lactate may be involved in the promotion of the fibrosis increasing the TGF-beta levels. In this work we aimed to investigate the role of lactate in the BM myelofibrosis. Results. From microarray datasets, we selected 34 PMF patients carrying the JAK2V617F mutation, 28 JAK2 wild-type patients and 16 healthy donors (HD). Our analysis showed that SLC16A1 (MCT1), SLC16A3(MCT2) and SLC16A7 (MCT4) genes were upregulated in patients in respect to healthy donors in a JAK2V617F mutation independent manner. Furthermore, we demonstrated a significant increase of lactate concentration in PB sera from PMF patients compared to HD, associated to higher percentage of circulating granulocyte- and monocyte-myeloid derived suppressor cells (Gr- and Mo-MDSCs), and Treg. Moreover, IDO, LAG3, BTLA, PDL-2, TIM-3 and CD152 levels were significantly increased in PMF sera compaterd to HD ones. To demonstrate that lactate could play a role in driving cancer immune evasion in PMF, healthy peripheral blood mononucleated cells (PBMCs) were incubated in presence of lactate. After 3 days we observed a significant increase of the percentage of Mo-MDSCs, Treg, CD4+PD1+ and CD8+PD1+ lymphocytes. The same results were obtained after incubation of PBMCs with sera from PMF patients. No effects were observed using HD sera. Interestingly, the percentages of Treg and Mo-MDSCs increased after exposure to PMF sera were significantly reduced in presence of the inhibitor of lactate transporter AZD3965. To investigate the role of lactate in the PMF microenvironment, we next exposed healthy MSCs to lactate for 48h. Treated MSCs assumed a CAF-like phenotype increasing expression of aSMA, FAP1 and TGF-beta. Moreover, Masson's trichrome staining showed an increase of collagen deposits in BM-MSCs associated to increased release of IL6, TGF-beta, MMP2, MMP9 and RANTES. Also, exposure to PMF sera induced higher collagen deposits in MSCs and this effect was reverted adding AZD3965. As BM fibrosis is frequently accompanied by osteosclerosis, we also investigated the effects of lactate on ostegenic differentiation of BM-MSCs. After 10 days of treatment with lactate, the BM-MSCs showed a morphological change associated to increased osteogenic gene markers such as BMP2, RUNX2 and SPARC (osteonectin), and higher released levels of calcitonin, BMP-2, MCP-1, sRANKL and osteoprotegerin. Conclusion Our results demonstrate that lactate might be involved in the immune impairment and BM fibrosis of PMF. The inhibition of lactate production and shuttles in myelofibrosis may be a strategy not only to inhibit invasive and metastatic behavior of cancer cells, but also to restore the anti-cancer immune response improving the results of therapy in MF patients. Disclosures Romano: Novartis: Honoraria; Takeda: Honoraria. Di Raimondo:Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; GSK: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Amgen, Takeda, Novartis: Honoraria; Celgene: Consultancy, Honoraria; GILEAD, Incyte: Research Funding. Palumbo:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e22515-e22515
Author(s):  
Asmaa Ferdjallah ◽  
Adam M Lee ◽  
Elise Moore ◽  
Aritro Nath ◽  
R. Stephanie Huang

e22515 Background: Osteosarcoma is a skeletal malignancy affecting children, adolescents, and young adults. Surgical resection and chemotherapy are the mainstay of therapy with a three-drug regimen - cisplatin, doxorubicin, and methotrexate. However, prognosis remains poor mainly due to chemo-resistance and/or metastases. Emerging evidence has shown that long non-coding RNAs (lncRNAs) are implicated in drug sensitivity and cancer metastasis. Our lab has recently identified strong significant association between cellular sensitivity to cisplatin and doxorubicin and expression of a lncRNA ANRIL in a collection of osteosarcoma cell lines. Methods: SiRNA knockdown experiments were carried out in an osteosarcoma cell line, SAOS2. Cells were exposed to multiple concentrations of cisplatin or doxorubicin. Cellular sensitivity to these two drugs was quantified after siRNA experiment with siRNA targeting ANRIL and scramble control at 24, 48 and 72h. Clinical outcome analysis was performed using data from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Results: We successfully knocked down ANRIL expression in SAOS2 cells with 88.5% efficiency. A significant decreased rate of proliferation was detected for cisplatin (7 uM, 72h) in knockdown cells (16.5% +/- 4.1) compared to scramble control (26.4% +/- 0.8). The cisplatin IC50 was decreased in the siRNA knockdown condition as compared to scramble control at 72h (p = 0.02). For doxorubicin, the IC50 was also significantly decreased in the siRNA knockdown condition as compared to scramble control (p = 0.002 and 0.007 at 24h and 72h, respectively). Survival outcomes, metastases at diagnosis, and percent necrosis (an indicator of treatment response) were evaluated in TARGET osteosarcoma patients (n = 121 and n = 43 for OS, percent necrosis, respectively) with varying degrees of ANRIL expression. Above the median ANRIL expression was associated with a greater number of death (p = 0.004) and higher chances of metastases at diagnosis (p = 0.013). Conclusions: Reducing ANRIL expression led to increased cellular sensitivity to cisplatin and doxorubicin, two key treatment agents for osteosarcoma. Higher ANRIL expression was significantly associated with higher rates of osteosarcoma death and metastases at diagnosis in a clinical cohort of patients. These findings may suggest ANRIL serves as a novel biomarker of cisplatin and doxorubicin sensitivity in osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document