scholarly journals SIMULATION TESTS OF EXTINGUISHING PROCESS USING MIST NOZZLES WITH APPLICATION OF HYBRID FIRE MODEL

2016 ◽  
Vol 22 (4) ◽  
pp. 573-583 ◽  
Author(s):  
Jerzy GAŁAJ ◽  
Marek KONECKI ◽  
Ritoldas ŠUKYS

The article presents a computer model of the fire extinguishing process using mist nozzles. A previously developed hybrid fire model was used for this purpose. Assumptions and relationships were given to represent a math­ematical model of extinguishing process, which comprises a unique approach to the determination of sprinkling area in an elementary cell of field fire model. A description of simulation tests of the model was given for several different input data, differing by mean diameters of droplets. This enabled a study of their effects on such output parameters as received heat flux, temperature and rate of its growth. For one selected computational cell located on the axis of the nozzle at floor level having the coordinates [10, 10, 1], the obtained results were presented in the form of heat flux and temperature. To simplify the analysis, characteristic parameters of particular curves were listed in the table. Conclusions formulated on the basis of results obtained during tests were specified at the end of work. They confirmed the expected regularity assuming that the extinguishing process was more effective in the case of droplets of a smaller diameter and greater sprinkling intensity. This allows assessing the degree, to which these stream parameters affect the extinguishing effectiveness.

1994 ◽  
Vol 144 ◽  
pp. 185-187
Author(s):  
S. Orlando ◽  
G. Peres ◽  
S. Serio

AbstractWe have developed a detailed siphon flow model for coronal loops. We find scaling laws relating the characteristic parameters of the loop, explore systematically the space of solutions and show that supersonic flows are impossible for realistic values of heat flux at the base of the upflowing leg.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 237-240
Author(s):  
P. Hammer ◽  
D. Litvack ◽  
J. P. Saul

Abstract:A computer model of cardiovascular control has been developed based on the response characteristics of cardiovascular control components derived from experiments in animals and humans. Results from the model were compared to those obtained experimentally in humans, and the similarities and differences were used to identify both the strengths and inadequacies of the concepts used to form the model. Findings were confirmatory of some concepts but contrary to some which are firmly held in the literature, indicating that understanding the complexity of cardiovascular control probably requires a combination of experiments and computer models which integrate multiple systems and allow for determination of sufficiency and necessity.


2020 ◽  
Vol 1006 ◽  
pp. 93-100
Author(s):  
Vadym Nizhnyk ◽  
Yurii Feshchuk ◽  
Volodymyr Borovykov

Based on analysis of appropriate literary sources we established that estimation of fire separation distances was based of two criteria: heat flux and temperature. We proposed to use “ignition temperature of materials” as principal criterion when determining fire separation distances between adjacent construction facilities. Based on the results derived while performing complete factorial we created mathematical model to describe trend of changing fire separation distances depending on caloric power of fire load (Q), openings factor of the external enclosing structures (k) and duration of irradiation (t); moreover, its adequacy was confirmed. Based on linear regression equations we substantiated calculation and tabular method for the determination of fire separation distances for a facility being irradiated which contains combustible or otherwise non-combustible façade and a facility where liquid oil products turn. We developed and proposed general methodology for estimation of fire separation distances between construction facilities by calculation.


1986 ◽  
Vol 71 ◽  
Author(s):  
I. Suni ◽  
M. Finetti ◽  
K. Grahn

AbstractA computer model based on the finite element method has been applied to evaluate the effect of the parasitic area between contact and diffusion edges on end resistance measurements in four terminal Kelvin resistor structures. The model is then applied to Al/Ti/n+ Si contacts and a value of contact resistivity of Qc = 1.8×10−7.Ωcm2 is derived. For comparison, the use of a self-aligned structure to avoid parasitic effects is presented and the first experimental results obtained on Al/Ti/n+Si and Al/CoSi2/n+Si contacts are shown and discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nathan Moles

PurposeConventional approaches to digital preservation posit that archives should define a Designated Community, or future user group, for whom they preserve digital information. Archivists can then use their knowledge of these users as a reference to help them deliver digital information that is intelligible and usable. However, this approach is challenging for archives with mandates to serve wide and diverse audiences; these archives risk undermining their efforts by focusing on the interests of a narrow user group.Design/methodology/approachA unique approach to this challenge was developed in the context of a project to build a digital preservation program at the Ontario Jewish Archives (OJA). It draws from previous research on this topic and is based on a combination of practical and theoretical considerations.FindingsThe approach described here replaces the reference of a Designated Community with three core components: a re-articulation of the Open Archival Information System (OAIS) mandatory responsibilities; the identification of three distinct tiers of access for digital records; and the implementation of an access portal that allows digital records to be accessed and rendered online. Together with supplemental shifts in reference points, they provide an alternative to the concept of a Designated Community in the determination of preservation requirements, the identification of significant properties, the creation of Representation Information and in the evaluation of success.Originality/valueThis article contributes a novel approach to the ongoing conversation about the Designated Community in digital preservation, its application and its limitations in an archival context.


2004 ◽  
Vol 126 (2) ◽  
pp. 422-428 ◽  
Author(s):  
Youngchul Ra ◽  
Rolf D. Feitz

A model for unsteady droplet vaporization is presented that considers the droplet temperature range from flash-boiling conditions to normal evaporation. The theory of continuous thermodynamics was used to model the properties and compositions of multicomponent fuels such as gasoline. In order to model the change of evaporation rate from normal to boiling conditions more realistically, an unsteady internal heat flux model and a new model for the determination of the droplet surface temperature is proposed. An explicit form of the equation to determine the heat flux from the surrounding gas mixture to the droplet-gas interface was obtained from an approximate solution of the quasi-steady energy equation for the surrounding gas mixture, with the inter-diffusion of fuel vapor and the surrounding gas taken into account. The model was applied to calculate evaporation processes of droplets for various ambient temperatures and droplet temperatures.


Sign in / Sign up

Export Citation Format

Share Document