scholarly journals TRACTOR’S ENGINE EFFICIENCY AND EXHAUST EMISSIONS’ RESEARCH IN DRILLING WORK

Author(s):  
Antanas Juostas ◽  
Algirdas Janulevičius

Tis paper provides an overview of possibilities for determining tractor’s engine load, fuel consumption and exhaust emissions in real operating conditions. Theuse of accumulated database in tractor’s electronic control modules for the analysis of engine load, fuel consumption and exhaust emissions is analysed. The methodology for analysis of engine power, speed and exhaust emissions’ dependencies, also for analysis of engine exhaust emissions is presented. Tis paper presents testing results of the unit combined of tractor “Massey Ferguson MF 6499” and drilling machine “Vaderstad Rapid” by engine load, fuel consumption and exhaust emissions. Drilling process time, engine load, fuel consumption and exhaust emission components’ distribution are presented in different engine speed and cyclic fuel injection modes. Test results are analysed separately for technological drilling and work processes at the headland. In the technological process of drilling, if the tractor engine speed and, correspondingly, the transmission gear ratio were reduced to get the set working speed, fuel consumption decreased, CO and CO2 emissions varied slightly, but the NOx increased significantly. Significant part of exhaust emissions occurred at headlands. The conclusion is that the fuel consumption and exhaust emissions, including harmful components, can be reduced only by complex optimization of technological processes and tractor operating modes.

2020 ◽  
Vol 182 (3) ◽  
pp. 54-58
Author(s):  
Andrzej Ziółkowski ◽  
Paweł Fuć ◽  
Piotr Lijewski ◽  
Łukasz Rymaniak ◽  
Paweł Daszkiewicz ◽  
...  

Road transport holds for the largest share in the freight transport sector in Europe. This work is carried out by heavy vehicles of various types. It is assumed that, in principle, transport should take place on the main road connections, such as motorways or national roads. Their share in the polish road infrastructure is not dominant. Rural and communal roads roads are the most prevalent. This fact formed the basis of the exhaust emissions and fuel consumption tests of heavy vehicles in real operating conditions. A set of vehicles (truck tractor with a semi-trailer) meeting the Euro V emission norm, transporting a load of 24,800 kg, was selected for the tests. The research was carried out on an non-urban route, the test route length was 22 km. A mobile Semtech DS instrument was used, which was used to measure the exhaust emissions. Based on the obtained results, the emission characteristics were determined in relation to the operating parameters of the vehicles drive system. Road emission, specific emission and fuel consumption values were also calculated.


Author(s):  
E. Movahednejad ◽  
F. Ommi ◽  
M. Hosseinalipour ◽  
O. Samimi

For spark ignition engines, the fuel-air mixture preparation process is known to have a significant influence on engine performance and exhaust emissions. In this paper, an experimental study is made to characterize the spray characteristics of an injector with multi-disc nozzle used in the engine. The distributions of the droplet size and velocity and volume flux were characterized by a PDA system. Also a model of a 4 cylinder multi-point fuel injection engine was prepared using a fluid dynamics code. By this code one-dimensional, unsteady, multiphase flow in the intake port has been modeled to study the mixture formation process in the intake port. Also, one-dimensional air flow and wall fuel film flow and a two-dimensional fuel droplet flow have been modeled, including the effects of in-cylinder mixture back flows into the port. The accuracy of model was verified using experimental results of the engine testing showing good agreement between the model and the real engine. As a result, predictions are obtained that provide a detailed picture of the air-fuel mixture properties along the intake port. A comparison was made on engine performance and exhaust emission in different fuel injection timing for 2600 rpm and different loads. According to the present investigation, optimum injection timing for different engine operating conditions was found.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5548
Author(s):  
Luca Marchitto ◽  
Cinzia Tornatore ◽  
Luigi Teodosio

Stringent exhaust emission and fuel consumption regulations impose the need for new solutions for further development of internal combustion engines. With this in mind, a refined control of the combustion process in each cylinder can represent a useful and affordable way to limit cycle-to-cycle and cylinder-to-cylinder variation reducing CO2 emission. In this paper, a twin-cylinder turbocharged Port Fuel Injection–Spark Ignition engine is experimentally and numerically characterized under different operating conditions in order to investigate the influence of cycle-to-cycle variation and cylinder-to-cylinder variability on the combustion and performance. Significant differences in the combustion behavior between cylinders were found, mainly due to a non-uniform effective in-cylinder air/fuel (A/F) ratio. For each cylinder, the coefficients of variation (CoVs) of selected combustion parameters are used to quantify the cyclic dispersion. Experimental-derived CoV correlations representative of the engine behavior are developed, validated against the measurements in various speed/load points and then coupled to an advanced 1D model of the whole engine. The latter is employed to reproduce the experimental findings, taking into account the effects of cycle-to-cycle variation. Once validated, the whole model is applied to optimize single cylinder operation, mainly acting on the spark timing and fuel injection, with the aim to reduce the specific fuel consumption and cyclic dispersion.


1989 ◽  
Vol 111 (3) ◽  
pp. 379-386 ◽  
Author(s):  
C. E. Hunter ◽  
H. A. Cikanek ◽  
T. P. Gardner

The combined effects of turbocharging, high fuel injection pressure, and reduced oil consumption on diesel exhaust emissions were investigated using a single-cylinder research engine. The influence of these exhaust emission control concepts on particulate composition was determined using a new particulate analysis method. In addition, the dependence of particulate composition on engine load and air utilization was examined using the microfumigation technique. Simultaneous application of these emissions control concepts reduced exhaust particulates by 70 percent. High injection pressure reduced the insoluble component of particulates, while reducing oil consumption and turbocharging the engine lowered both soluble and insoluble particulates. Reductions in oil-derived particulates with increasing engine load were partially attributed to increases in volumetric air utilization. Ninety percent of the lube oil found in exhaust particulates was unburned; however, similar concentrations of unburned and partially oxidized components were observed in fuel-derived particulates.


2019 ◽  
Vol 2 (3) ◽  
pp. 97-103 ◽  
Author(s):  
Mujahid Wahyu ◽  
Hadi Rahmat ◽  
Gabriel Jeremy Gotama

Cassava biogasoline was tested on electronic fuel injection vehicles in urban traffic conditions with varying engine load. Biogasoline tested includes B0, B10, B20, and B30. The engine speed was operated within 750 to 1800 rpm (low-speed range) to simulate urban traffic condition. The engine load was varied through the operation of air conditioner (AC). Fuel consumption was measured in real terms (ml/s) and CO emissions were measured with the Hesbon HG 520 Engine Gas Analyzer (EGA) in the percentage of total exhaust gas. The results showed that B10 has the lowest fuel consumption of 0.24 ml/s in conditions without AC and 0.41 ml/s with AC. Meanwhile, CO emissions tend to be constant with change in the proportion of cassava biogasoline and increased with additional AC load.


Author(s):  
R. K. Mandloi ◽  
A. Rehman

In the present scenario, the designs of S I engine being used in automotives by various manufacturers are not properly suitable to Indian climate condition. India is among those tropical countries where the variation in the temperature is having very vast range i.e. from 0°C to 50°C in various regions of the country. Looking in to this vast varying temperature range, it is very difficult to say that which temperature is most suited for operating condition of engines and will give the best performance levels as far as SFC & BP is concerned. In this work, it has been tried to investigate the best option to run the SI engine and simultaneously to maintain the emission norms. Today research and development in the field of gasoline engines have to face double challenge; on one hand, fuel consumption has to be reduced, while on the other hand, even more stringent emission standard have to be fulfilled. The development of engines with its complexity of in-cylinder process requires modern developed tools to exploit the full potential in order to reduce fuel consumption. There are many strategies for improving fuel economy and reducing exhaust emission HC & CO. The experimental study is carried out on a three cylinders, four stroke, petrol, carbureted, water cooled engine test rig connected to eddy current type dynamometer. The objective of this work was to examine engine performance parameter i.e. specific fuel consumption (SFC), brake power (BP) and also exhaust emission on Varying Engine Temperature at 50, 60, 70, 80° C and at an engine speed of 1500, 2000, 2500 rpm with respect to engine load 6, 9, 12 kg. The results are shown by various graphs with effect of engine temperature on specific fuel consumption, brake power, engine speed, engine load and emission levels of Nox, HC, CO for gasoline and LPG to improve fuel consumption.


Author(s):  
Danar Susilo Wijayanto ◽  
Ngatou Rohman ◽  
Ranto Ranto ◽  
Husin Bugis ◽  
Arif Nurachman ◽  
...  

The purpose of this study wereto determine the effect usage of gasoline heating through a capillary tube which is radial finned in the upper tank of radiator on fuel consumption and exhaust emissions of CO and HC in the engine of Toyota Kijang.This study is experimental. The sample in this study was the machine of Toyota Kijang with machine number 7855290. Free variable of the research is the usage of fuel heating with fin variations on the copper capillar tube consist of copper capillar tube without fin, finned copper capillar tube with the ranges between the fins are 10 mm, 20 mm, and 30 mm and variations of engine speed at 1000 r.p.m., 2000 r.p.m., and 3000 r.p.m. Experimental method to measure the fuel consumption is done by recording the time required for spent fuel 50 cc and exhaust emissions of CO and HC in the engine of Toyota Kijang.The result of this research shows that the average consumption at engine speed 1000 r.p.m. on the normal condition Toyota Kijang has average fuel consumption 32,066×10-3 cc per cycle. In the usage of fuel heating using three copper tubes with the range between the fins is 10 mm fuel consumption by 25,174×10-3 cc per cycle. Fuel consumption decreased by 6,892×10-3 cc per cycle or 21,58%. At engine speed 2000 r.p.m. on the normal condition Toyota Kijang average consumption 38,487×10-3 cc per cycle. In the usage of fuel heating using three copper tubes with the range between the fins is 10 mm fuel consumption by 28,121×10-3 cc per cycle. Fuel consumption decreased by 10,366×10-3 cc per cycle or 26,93%. At engine speed 3000 r.p.m. on the normal condition Toyota Kijang average consumption 36,783×10-3 cc per cycle. In the usage of fuel heating using three copper tubes with the range between the fins is 10 mm fuel consumption by 31,187×10-3 cc per cycle. Fuel consumption decreased by 5,596×10-3 per cycle or 15,21%. The conclusion of this research is the usage of fuel heating using three copper tubes with the range between the fins is 10mm in the upper tank of radiator can reduce the biggest lowers fuel consumption on the Engine of Toyota Kijang 1989.This research also shows that: the usage of fuel heating use 3 finned copper tubes in the upper tank of radiator can reduce the highest level on exhaust emissions of CO and HC in the engine of Toyota Kijang. The different of CO exhaust emission is 2,54 % volume or 85 % while the HC exhaust emission is 139,667 ppm volume or 72 %.


Author(s):  
Rainer W. Jorach ◽  
Hartmut Schneider ◽  
Torsten Bucher ◽  
Thomas C. Schauer

To meet the exhaust emission requirements implemented by U. S. EPA, UIC, IMO and others, it is not only necessary to develop new engines and combustion systems that meet these requirements, but also to update existing engines with low emission technologies. The electronic common rail fuel system has positive advantages over conventional methods, including increased fuel efficiency and limited exhaust emissions and smoke. Since only one compact high pressure common rail pump is needed, instead of one jerk pump per cylinder, to adapt to the existing engine designs, the only challenge is to fit the injectors into the existing cylinder heads. This publication evaluates the potential impacts of this new technology on emissions and fuel consumption. It outlines component design in detail and illustrates some specific production issues. One unique retrofit proposal, focused towards existing engines, will be a low emissions kit supplied by L’Orange and Fluid Mechanics for application on EMD 645 and 710 engines. These two-stroke engines have been built since 1965 and more than 50,000 exist today, mostly on large locomotives in the NAFTA region. The retrofit kit is backed by L’Orange’s knowledge and experience in the design and production of over 150,000 common rail fuel injectors supplied to MTU and Detroit Diesel series 4000 engines.


2020 ◽  
Vol 19 (3) ◽  
pp. 473-484
Author(s):  
Mina Tadros ◽  
Manuel Ventura ◽  
C. Guedes Soares

Abstract Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines. This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions. From that point, an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used. The variations of SOx emissions are computed in g/kW·h and in parts per million (ppm) as functions of the optimized parameters: brake specific fuel consumption and the amount of air-fuel ratio respectively. Then, a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load. These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.


2020 ◽  
pp. 146808742096085
Author(s):  
J Valero-Marco ◽  
B Lehrheuer ◽  
JJ López ◽  
S Pischinger

The approach of this research is to enlarge the knowledge about the methodologies to increase the maximum achievable load degree in the context of gasoline CAI engines. This work is the continuation of a previous work related to the study of the water injection effect on combustion, where this strategy was approached. The operating strategies to introduce the water and the interconnected settings were deeply analyzed in order to optimize combustion and to evaluate its potential to increase the maximum load degree when operating in CAI. During these initial tests, the engine was configured to enhance the mixture autoignition. The compression ratio was high compared to a standard gasoline engine, and suitable fuel injection strategies were selected based on previous studies from the authors to maximize the reactivity of the mixture, and get a stable CAI operation. Once water injection proved to provide encouraging results, the next step dealt in this work, was to go deeper and explore its effects when the engine configuration is more similar to a conventional gasoline engine, trying to get CAI combustion closer to production engines. This means, mainly, lower compression ratios and different fuel injection strategies, which hinders CAI operation. Finally, since all the previous works were performed at constant engine speed, the engine speed was also modified in order to see the applicability of the defined strategies to operate under CAI conditions at other operating conditions. The results obtained show that all these modifications are compatible with CAI operation: the required compression ratio can be reduced, in some cases the injection strategies can be simplified, and the increase of the engine speed leads to better conditions for CAI combustion. Thanks to the analysis of all this data, the different key parameters to manage this combustion mode are identified and shown in the paper.


Sign in / Sign up

Export Citation Format

Share Document