scholarly journals Preparation and Evaluation of Nanoemulgels Containing a Combination of Grape Seed Oil and Anisotriazine as Sunscreen

2020 ◽  
Vol 8 (B) ◽  
pp. 994-999
Author(s):  
Anayanti Arianto ◽  
Desi Yet Lie Lie ◽  
Sumaiyah ◽  
Hakim Bangun Bangun

BACKGROUND: Grape seed oil contains Vitamin E which acts as skin antioxidant and natural ultraviolet (UV) absorbent and anisotriazine is used as chemical absorbent. Sun protection factor (SPF) value of the sunscreen and physical stability can be increased using a combination of grape seed oil and anisotriazine as sunscreen material and preparation by nanotechnology. AIM: The objective of this study was to prepare and evaluate physical stability and in vitro SPF value of sunscreen nanoemulgel containing grape seed oil and anisotriazine. METHODS: Nanoemulgels containing 4% grape seed oil and anisotriazine (1.6% and 3.2%) were formulated by adding 2% of Carbopol 940 gel to the optimized nanoemulsions formulation with a ratio of nanoemulsion and gel 4:1. The nanoemulgels were evaluated physical stability during storage for 12 weeks at variations of temperature, centrifugation, and cycling test. SPF values of nanoemulgels were determined by UV–visible spectrophotometric method and compared to emulgel. Droplet morphology observation of nanoemulgel using transmission electron microscope. RESULTS: The results of this study showed that sunscreen nanoemulgel containing 4% grape seed oil and 3.2% anisotriazine had average droplet size of 187.5 nm, physically stable during experiment for 12 weeks at variation of temperature and after centrifugation and cycling test, but the sunscreen emulgel showed a phase separation. The SPF of nanoemulgel containing a combination of 4% grape seed oil and 3.2%, nanoemulgel without anisotriazine, and emulgel formulation was 19.325 ± 0.232, 11.169 ± 0.113, and 11.913 ± 0.161, respectively. Transmission electron microscopy analysis of droplet morphology showed that this nanoemulgel formulation formed a spherical globule. CONCLUSION: The sunscreen nanoemulgel formulation containing combination of 4% grape seed oil and 3.2% anisotriazine more stable than sunscreen emulgel during experiment for 12 weeks at room temperature and showed the SPF value higher compared to emulgel containing 4% grape seed oil and 3.2% anisotriazine and nanoemulgel without anisotriazine.

Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 708 ◽  
Author(s):  
Sarah Fruehwirth ◽  
Sofie Zehentner ◽  
Mohammed Salim ◽  
Sonja Sterneder ◽  
Johanna Tiroch ◽  
...  

The intake of dietary lipids is known to affect the composition of phospholipids in gastrointestinal cells, thereby influencing passive lipid absorption. However, dietary lipids rich in polyunsaturated fatty acids, such as vegetable oils, are prone to oxidation. Studies investigating the phospholipid-regulating effect of oxidized lipids are lacking. We aimed at identifying the effects of oxidized lipids from moderately (18.8 ± 0.39 meq O2/kg oil) and highly (28.2 ± 0.39 meq O2/kg oil) oxidized and in vitro digested cold-pressed grape seed oils on phospholipids in human gastric tumor cells (HGT-1). The oils were analyzed for their antioxidant constituents as well as their oxidized triacylglycerol profile by LC-MS/MS before and after a simulated digestion. The HGT-1 cells were treated with polar oil fractions containing epoxidized and hydroperoxidized triacylglycerols for up to six hours. Oxidized triacylglycerols from grape seed oil were shown to decrease during the in vitro digestion up to 40% in moderately and highly oxidized oil. The incubation of HGT-1 cells with oxidized lipids from non-digested oils induced the formation of cellular phospholipids consisting of unsaturated fatty acids, such as phosphocholines PC (18:1/22:6), PC (18:2/0:0), phosphoserine PS (42:8) and phosphoinositol PI (20:4/0:0), by about 40%–60%, whereas the incubation with the in vitro digested oils did not affect the phospholipid metabolism. Hence, the gastric conditions inhibited the phospholipid-regulating effect of oxidized triacylglycerols (oxTAGs), with potential implications in lipid absorption.


2016 ◽  
Vol 9 ◽  
pp. NMI.S32910 ◽  
Author(s):  
Juliano Garavaglia ◽  
Melissa M. Markoski ◽  
Aline Oliveira ◽  
Aline Marcadenti

Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health.


Pharmaciana ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Sani Ega Priani ◽  
Dinnanda Yussepina Wulansari ◽  
Fitrianti Darusman

Author(s):  
ANAYANTI ARIANTO ◽  
HAKIM BANGUN ◽  
SUMAIYAH ◽  
CHRISTY NATASYA DWI YANTI PUTRI SIREGAR

Objective: The purpose of this study was to develop a nanoemulgel containing vegetable oil of carrot seed oil as an effective natural sunscreen and skin anti-aging. Methods: Nanoemulgels containing 4% carrot seed oil were formulated in three formulas with different ratios of Tween 80 and Sorbitol and prepared by using the high-energy emulsification method. The nanoemulgels were determined for the organoleptic characteristic, globule size, pH, physical stability during storage for 12 w at three different temperatures (room, high and low temperature), centrifugation, and cycling test. The Sun Protection Factor (SPF) value was determined by UV spectrophotometric method and the effectiveness of anti-aging was evaluated by using a skin analyzer and the results were compared with sunscreen emulgel. Results: Nanoemulgel containing 4% carrot seed oil with a ratio of Tween 80 as surfactant and Sorbitol as co-surfactant 40 and 20 resulted in the smallest mean droplet size of 338.34 nm and the sizes were increased during 12 w of storage at room temperature but still in the nano size and this nanoemulgel did not show phase separation or still stable. These nanoemulgels were also stable after the centrifugation and cycling test. The emulgel preparation was not stable or showed phase separation after the centrifugation test. The SPF value obtained from the nanoemulgel was 20.28±0.22 and these values were higher than the sunscreen emulgel (13.94±0.27). The pore size, spot, and wrinkles of the volunteer skin were reduced after using the nanoemulgel containing 4% carrot seed. Conclusion: The sunscreen and skin anti-aging activity of nanoemulgel preparation containing 4% carrot seed oil with a ratio of surfactant Tween 80 and co-surfactant Sorbitol 40 and 20 were more effective compare with emulgel preparation.


2020 ◽  
Vol 57 (3) ◽  
Author(s):  
Sahar Hassan Orabi ◽  
Sherif Mohamed Shawky

The current study focused on investigating the renoprotective effects of grape seed oil (GSO) against hexavalent chromium (Cr (VI))-induced nephrotoxicity. A total of 40 male rats were randomly divided into four groups: group I served as the control group, group II received 1000 mg/L potassium dichromate (353.5 mg/L Cr(VI)) in drinking water for 12 weeks, group III received 3.7 g/kg body weight/day GSO orally for 12 weeks, and group IV received GSO together with potassium dichromate for 12 weeks. Cr(VI) significantly increased serum levels of urea, creatinine, potassium and glucose. In addition, Cr(VI) increased MDA levels and induced renal tissue damage and DNA damage. On the other hand, Cr(VI) decreased serum levels of sodium and antioxidant defence system [reduced glutathione (GSH) and catalase (CAT)]. However, treatment with GSO prevented elevation levels of serum urea, creatinine, potassium and glucose. In addition, GSO enhanced sodium level, renal tissue antioxidant defense system due to its curative effect ameliorated particularly oxidative stress, renal tissue and DNA damage. In conclusion, these results demonstrate that GSO is a promising nephroprotective agent against Cr(VI)-induced nephrotoxicity.Key words: grape seed oil; hexavalent chromium; nephrotoxicity; DNA damage BLAŽILNI UČINKI OLJA GROZDNIH PEŠK PRI TOKSIČNI OBREMENITVI LEDVIC TER VPLIV NA OKSIDATIVNI STRES PODGAN, POVZROČEN S KROMOM Povzetek: Študija je bila osredotočena na proučevanje zaščitnih učinkov olja grozdnih pešk (GSO) pri toksični obremenitvi ledvic, povzročeni s heksavalentnim kromom (Cr (VI)). Štirideset samcev podgan je bilo naključno razdeljenih v štiri skupine: skupina I - kontrolna skupina, skupina II, ki je v pitni vodi 12 tednov prejemala 1000 mg/L kalijevega dikromata (353,5 mg/L Cr (VI)), skupina III, ki je peroralno 12 tednov prejemala 3,7 g/kg telesne mase/dan GSO ter skupina IV, ki je 12 tednov prejemala GSO skupaj s kalijevim dikromatom. Cr(VI) je znatno zvišal serumske ravni sečnine, kreatinina, kalija in glukoze v serumu. Poleg tega je Cr(VI) zvišal raven MDA in povzročil poškodbe ledvičnega tkiva in poškodbe DNK. Po drugi strani je Cr(VI) znižal serumsko raven natrija in antioksidativnega obrambnega sistema, zmanjšal raven glutationske peroksidaze in katalaze. Dodajanje GSO poskusnim živalim je preprečilo zvišanje ravni sečnine v serumu, kreatinina, kalija, natrija in glukoze. Poleg tega je GSO izboljšal obrambni sistem antioksidantov ledvičnega tkiva. Zaradi svojega zdravilnega učinka je izboljšal zlasti oksidativni stres, poškodbe ledvičnega tkiva in DNK. Rezultati kažejo, da je GSO obetavno zaščitno sredstvo za ledvica pri toksični obremenitvi, povzročeni s Cr(VI).Ključne besede: olje grozdnih pešk; heksavalentni krom; nefrotoksičnost; poškodba DNK


OCL ◽  
2021 ◽  
Vol 28 ◽  
pp. 30
Author(s):  
Viktória Kapcsándi ◽  
Erika Hanczné Lakatos ◽  
Beatrix Sik ◽  
László Ádám Linka ◽  
Rita Székelyhidi

In this study, we examined the yield and oil quality of eight different grape varieties. For the experiments, the grape seeds were obtained from the Benedictine Pannonhalma Archabbey in the northwestern region of Hungary. The aim of the studies was to determine the oil yield obtained by extraction and to examine the differences between the fatty acid composition, antioxidant capacity, and total polyphenol content of the oils of different grape varieties. Based on the results, the oil content of the grape seeds varied between 99.91 g/kg and 126.74 g/kg. The grape seed oils analysed contained significant amounts of stearic acid (3.42–9.93%), palmitic acid (7.81–10.66%), oleic acid (14.29–19.92%), and linoleic acid (66.85–72.47%). Besides, the grape seed oils tested contained several other fatty acids in small amounts. There were significant differences in the total antioxidant and total polyphenol content of the oils. Total polyphenol content ranged from 0.24 to 1.13 mg GAE/g, while the total antioxidant content changed between 0.12 and 0.78 μg TEAC/g. The results show that the studied varieties are suitable for the production of table grape seed oil based on their oil yield, and the oils have favourable, health-protecting properties in terms of their quality.


2019 ◽  
Vol 7 (2) ◽  
pp. 087-094
Author(s):  
Mai Mohsen El Maghraby ◽  
Nada Mosaad El Maghraby ◽  
Ameera Ahmed Salama ◽  
Azza Shawky Abdlmonem ◽  
Eman Abdellatefe Authman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document