scholarly journals A Systematic Review of the Effectiveness of Tai Chi Exercises for Improving Balance and Lower Limb Muscle Strength of the Elderly in the Community

2021 ◽  
Vol 9 (T5) ◽  
pp. 6-12
Author(s):  
Kadek Dio Agus Bagiartana ◽  
Titih Huriah

BACKGROUND: Balance disorders are the primary cause of falls, a significant health concern for the elderly. Tai Chi (TC) improves the balance and strength of the lower limb muscles that focus on centering the mind, bodywork, and breathing exercises. AIM: A systematic review was conducted to search for evidence of the effects of Thai Chi in balancing and strengthening of lower extremities among the elderly in the community. METHODS: According to the preferred reporting items for systematic reviews and meta-analyses guidelines, a systematic review was conducted. Databases included Science Direct, ProQuest, and PubMed, from 2015 to 2020, with research articles being original studies. The quality of research articles was assessed using the Physiotherapy Evidence Database scale. Systematically analyses were used for results syntheses. RESULTS: Six articles were included in this review. TC exercises effectively improve the balance and muscle strength of the lower limbs among the elderly in the community. TC has a beneficial effect on evaluation in the short (8 weeks) and long (12 weeks) term to prevent falls among the elderly in the community. CONCLUSION: TC exercises are beneficial for improving balance and muscle strength of the lower limb among the elderly in the community with Selected TC, Traditional TC, and Modified Chen-style TC.

2019 ◽  
Vol 2 (3) ◽  
pp. 118
Author(s):  
Adriani Adriani ◽  
Nurfatma Sary

<p>Musculoskeletal system disorders of weakness in the muscles of the elderly are common. Actions that can be taken to reduce complaints of the elderly are with range of motion (ROM) exercises. The purpose of this study was to determine the effect of active range of motion (ROM) exercises on increasing the strength of lower limb muscles in the elderly. Pre-experimental research design with one group pre-test and post-test. By means of purposive sampling with 6 respondents. Giving intervention as much as 6 times exercise for 3 weeks with a frequency of 2 times a day . It takes 10 minutes with 3 repetitions of movements. Analysis was performed by paired dependent T-test samples. The results showed that the average lower limb muscle strength in the elderly before active ROM exercises were the hip region = 3.03317, the knee region = 3.44433, the ankle region = 3.24300, the toe region = 3.31950. While the average lower limb muscle strength after active ROM exercises are the hip region = 3.22117, knee region = 3.76367, ankle region = 3.51383, toe area = 3.86800, with hip value p = 0.028, knee p = 0.002, ankle p = 0.002, toe p = 0,000. Based on the results of the study it can be concluded that there is an effect of active range of motion (ROM) exercises on increasing muscle strength in the elderly. This research is expected to be a consideration for the elderly orphanages in order to make the range of motion (ROM) as an exercise program to increase muscle strength in the elderly.</p>


2020 ◽  
Vol 20 (09) ◽  
pp. 2040020
Author(s):  
MINJOO KIM ◽  
SEUNGYONG OH ◽  
KYONG KIM ◽  
TAEKYU KWON ◽  
CHULUN HONG

In this study, lift chair was developed to reduce safety accidents in the daily lives of elderly people with reduced muscle strength as the importance of health and well-being of the elderly was emphasized by the increase in the elderly population. In addition, muscle strength characteristics of the elderly and those in their 20s were compared and analyzed when using lift chair. The lift chair used are chairs that can be raised and lowered and designed to reach the floor in full descent. The EMG was measured to compare the near-term use of lift chair to those in their 20s. As a result, the elderly had higher use of lower limb muscles compared to young participants. It was judged that the upper and lower extremities were difficult to move due to the characteristics of the elderly with reduced muscle strength, and that the upper and lower limbs were used simultaneously to complete the movement. The results showed the characteristics of everyday motion of the elderly for the development of lift chair and can help improve design, function, etc. in later development of lift chair.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
M Borges ◽  
M Lemos Pires ◽  
R Pinto ◽  
G De Sa ◽  
I Ricardo ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Exercise prescription is one of the main components of phase III Cardiac Rehabilitation (CR) programs due to its documented prognostic benefits. It has been well established that, when added to aerobic training, resistance training (RT) leads to greater improvements in peripheral muscle strength and muscle mass in patients with cardiovascular disease (CVD). With COVID-19, most centre-based CR programs had to be suspended and CR patients had to readjust their RT program to a home-based model where weight training was more difficult to perform. How COVID-19 Era impacted lean mass and muscle strength in trained CVD patients who were attending long-term CR programs has yet to be discussed. Purpose To assess upper and lower limb muscle strength and lean mass in CVD patients who had their centre-based CR program suspended due to COVID-19 and compare it with previous assessments. Methods 87 CVD patients (mean age 62.9 ± 9.1, 82.8% male), before COVID-19, were attending a phase III centre-based CR program 3x/week and were evaluated annually. After 7 months of suspension, 57.5% (n = 50) patients returned to the face-to-face CR program. Despite all constraints caused by COVID-19, body composition and muscle strength of 35 participants (mean age 64.7 ± 7.9, 88.6% male) were assessed. We compared this assessment with previous years and established three assessment time points: M1) one year before COVID-19 (2018); M2) last assessment before COVID-19 (2019); M3) the assessment 7 months after CR program suspension (last trimester of 2020). Upper limbs strength was measured using a JAMAR dynamometer, 30 second chair stand test (number of repetitions – reps) was used to measure lower limbs strength and dual energy x-ray absorptiometry was used to measure upper and lower limbs lean mass. Repeated measures ANOVA were used. Results Intention to treat analysis showed that upper and lower limbs lean mass did not change from M1 to M2 but decreased significantly from M2 to M3 (arms lean mass in M2: 5.68 ± 1.00kg vs M3: 5.52 ± 1.06kg, p = 0.004; legs lean mass in M2: 17.40 ± 2.46kg vs M3: 16.77 ± 2.61kg, p = 0.040). Lower limb strength also decreased significantly from M2 to M3 (M2: 23.31 ± 5.76 reps vs M3: 21.11 ± 5.31 reps, p = 0.014) after remaining stable in the year prior to COVID-19. Upper limb strength improved significantly from M1 to M2 (M1: 39.00 ± 8.64kg vs M2: 40.53 ± 8.77kg, p = 0.034) but did not change significantly from M2 to M3 (M2 vs M3: 41.29 ± 9.13kg, p = 0.517). Conclusion After CR centre-based suspension due to COVID-19, we observed a decrease in upper and lower limbs lean mass and lower limb strength in previously trained CVD patients. These results should emphasize the need to promote all efforts to maintain physical activity and RT through alternative effective home-based CR programs when face-to-face models are not available or possible to be implemented.


Medicina ◽  
2020 ◽  
Vol 56 (12) ◽  
pp. 683
Author(s):  
Maros Kalata ◽  
Tomas Maly ◽  
Mikulas Hank ◽  
Jakub Michalek ◽  
David Bujnovsky ◽  
...  

Background and objective: Type of physical activity may influence morphological and muscular asymmetries in the young population. However, less is known about the size of this effect when comparing various sports. The aim of this study was to identify the degree of bilateral asymmetry (BA) and the level of unilateral ratio (UR) between isokinetic strength of knee extensors (KE) and flexors (KF) among athletes of three different types of predominant locomotion in various sports (symmetric, asymmetric and hybrid). Material and methods: The analyzed group consisted of young elite athletes (n = 50). The maximum peak muscle torque of the KE and KF in both the dominant (DL) and non-dominant (NL) lower limb during concentric muscle contraction at an angular velocity of 60°·s−1 was measured with an isokinetic dynamometer. Results: Data analysis showed a significant effect of the main factor (the type of sport) on the level of monitored variables (p = 0.004). The type of sport revealed a significant difference in the bilateral ratio (p = 0.01). The group of symmetric and hybrid sports achieved lower values (p = 0.01) of BA in their lower limb muscles than those who played asymmetric sports. The hybrid sports group achieved higher UR values (p = 0.01) in both lower limbs. Conclusions: The results indicate that sports with predominantly symmetrical, asymmetrical, and hybrid types of locomotion affected the size of the BA, as well as the UR between KE and KF in both legs in young athletes. We recommend paying attention to regular KE and KF strength diagnostics in young athletes and optimizing individual compensatory exercises if a higher ratio of strength asymmetry is discovered.


2019 ◽  
Vol 100 (6) ◽  
pp. 1102-1113 ◽  
Author(s):  
Liye Zou ◽  
Jia Han ◽  
Chunxiao Li ◽  
Albert S. Yeung ◽  
Stanley Sai-chuen Hui ◽  
...  

2013 ◽  
Vol 109 (8) ◽  
pp. 1996-2006 ◽  
Author(s):  
Hidehito Tomita ◽  
Yoshiki Fukaya ◽  
Kenji Totsuka ◽  
Yuri Tsukahara

This study aimed to determine whether individuals with spastic diplegic cerebral palsy (SDCP) have deficits in anticipatory inhibition of postural muscle activity. Nine individuals with SDCP (SDCP group, 3 female and 6 male, 13–24 yr of age) and nine age- and sex-matched individuals without disability (control group) participated in this study. Participants stood on a force platform, which was used to measure the position of the center of pressure (CoP), while holding a light or heavy load in front of their bodies. They then released the load by abducting both shoulders. Surface electromyograms were recorded from the rectus abdominis, erector spinae (ES), rectus femoris (RF), medial hamstring (MH), tibialis anterior (TA), and gastrocnemius (GcM) muscles. In the control group, anticipatory inhibition before load release and load-related modulation of the inhibition were observed in all the dorsal muscles recorded (ES, MH, and GcM). In the SDCP group, similar results were obtained in the trunk muscle (ES) but not in the lower limb muscles (MH and GcM), although individual differences were seen, especially in MH. Anticipatory activation of the ventral lower limb muscles (RF and TA) and load-related modulation of the activation were observed in both participant groups. CoP path length during load release was longer in the SDCP group than in the control group. The present findings suggest that individuals with SDCP exhibit deficits in anticipatory inhibition of postural muscles at the dorsal part of the lower limbs, which is likely to result in a larger disturbance of postural equilibrium.


2013 ◽  
Vol 19 (3) ◽  
pp. 620-626 ◽  
Author(s):  
Camilla Zamfolini Hallal ◽  
Nise Ribeiro Marques ◽  
Edgar Ramos Vieira ◽  
Denis Brunt ◽  
Deborah Hebling Spinoso ◽  
...  

The purpose of this study was to investigate the influence of daily cognitive task on stiffness of old and young female adults during the gait. The study included 17 physically active younger and 18 older women, with low risk of falls. The volunteers were asked to walk on the treadmill at two different gait conditions: normal gait and functional dual-task gait. The electromyographic signals were collected of the lower limb muscles. The percentage of coactivation for the tibialis anterior/gastrocnemius lateralis and tibialis anterior/soleus were significantly higher in elderly than in younger in the normal gait and dual-task gait. Our results suggest that the elderly have a greater stiffness in the ankle joint during gait normal and daily dual task gait. Thus, we conclude that challenging cognitively situations during the gait may increase the risk of falls in this population.


2020 ◽  
Vol 6 ◽  
pp. 233372142097980
Author(s):  
Kenichi Kaneko ◽  
Hitoshi Makabe ◽  
Kazuyuki Mito ◽  
Kazuyoshi Sakamoto ◽  
Yoshiya Kawanori ◽  
...  

This study examined the characteristics of lower limb muscle activity in elderly persons after ergometric pedaling exercise for 1 month. To determine the effect of the exercise, surface electromyography (SEMG) of lower limb muscles was subjected to Daubechies-4 wavelet transformation, and mean wavelet coefficients were compared with the pre-exercise coefficients and the post-exercise coefficients in each wavelet level. The characteristics of muscle activity after pedaling exercise were also compared between the elderly subjects and young subjects. For the elderly subjects, the mean wavelet coefficients were significantly decreased in the tibialis anterior and the gastrocnemius medialis at wavelet levels of 3, 4, and 5 (125–62.5, 62.5–31.25, and 31.25–15.625 Hz, respectively), by pedaling exercise. However, the mean power of wavelet levels of 2 and 3 (250–125 and 125–62.5 Hz) within the rectus femoris and the biceps femoris were significantly increased in the young subjects. The effect of pedaling exercise is different from the effects of heavy-resistance training. It was suggested that the muscle coordination, motor unit (MU) firing frequency, and firing fiber type of lower limb muscles are changed with the different characteristics between elderly and young persons by pedaling exercise for 1 month.


Author(s):  
Longhan Xie ◽  
Xiaodong Li

During walking, human lower limbs accelerate and decelerate alternately, during which period the human body does positive and negative work, respectively. Muscles provide power to all motions and cost metabolic energy both in accelerating and decelerating the lower limbs. In this work, the lower-limb biomechanics of walking was analyzed and it revealed that if the negative work performed during deceleration can be harnessed using some assisting device to then assist the acceleration movement of the lower limb, the total metabolic cost of the human body during walking can be reduced. A flexible lower-limb exoskeleton was then proposed; it is worn in parallel to the lower limbs to assist human walking without consuming external power. The flexible exoskeleton consists of elastic and damping components that are similar to physiological structure of a human lower limb. When worn on the lower limb, the exoskeleton can partly replace the function of the lower limb muscles and scavenge kinetic energy during lower limb deceleration to assist the acceleration movement. Besides, the generator in the exoskeleton, serving as a damping component, can harvest kinetic energy to produce electricity. A prototype of the flexible exoskeleton was developed, and experiments were carried out to validate the analysis. The experiments showed that the exoskeleton could reduce the metabolic cost by 3.12% at the walking speed of 4.5 km/h.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2820
Author(s):  
Julie Mareschal ◽  
Laurence Genton ◽  
Tinh-Hai Collet ◽  
Christophe Graf

Aging is a global public health concern. From the age of 50, muscle mass, muscle strength and physical performance tend to decline. Sarcopenia and frailty are frequent in community-dwelling older adults and are associated with negative outcomes such as physical disability and mortality. Therefore, the identification of therapeutic strategies to prevent and fight sarcopenia and frailty is of great interest. This systematic review aims to summarize the impact of nutritional interventions alone or combined with other treatment(s) in older community-dwelling adults on (1) the three indicators of sarcopenia, i.e., muscle mass, muscle strength and physical performance; and (2) the hospitalization and readmission rates. The literature search was performed on Medline and included studies published between January 2010 and June 2020. We included randomized controlled trials of nutritional intervention alone or combined with other treatment(s) in community-living subjects aged 65 or older. In total, 28 articles were retained in the final analysis. This systematic review highlights the importance of a multimodal approach, including at least a combined nutritional and exercise intervention, to improve muscle mass, muscle strength and physical performance, in community-dwelling older adults but especially in frail and sarcopenic subjects. Regarding hospitalization and readmission rate, data were limited and inconclusive. Future studies should continue to investigate the effects of such interventions in this population.


Sign in / Sign up

Export Citation Format

Share Document