A DIGITAL METHOD FOR MEASURING THE THERMAL COMFORT OF THE AIR

2002 ◽  
Vol 14 (04) ◽  
pp. 175-181
Author(s):  
TANG-JEN LIU ◽  
MING-SHING YOUNG

Opening windows is frequently done to refresh the indoor air for the occupants. To maintain the cleanliness and freshness of the indoor air, more outdoor air is needed. But its high temperature and humidity are harmful to the thermal comfort of the indoor environment. Therefore, determining the amount of outdoor air allowed to enter the room is very important for the optimum conditioning of the indoor air. The ASHRAE comfort charts indicate the percentage of subjects feeling comfortable during various combinations of dry-bulb temperature, humidity, and air movement. A set of mathematical expressions were proposed to model the charts in order to calculate the comfort degree of the outdoor air automatically with its temperature and humidity. In this paper, the measurement of temperature and humidity was completed by a self-developed digital method. Besides, the comfort level of the sampled air was also simultaneously determined by this digital method based on the mathematical model of comfort charts. The system implemented based on our method is portable. This will let us make good use of the outdoor air and controll the ventilation machine more effectively.

2020 ◽  
Vol 12 (24) ◽  
pp. 10568
Author(s):  
Hosang Ahn ◽  
Jae Sik Kang ◽  
Gyeong-Seok Choi ◽  
Hyun-Jung Choi

The indoor environment is a crucial part of the built environment where our daily time is mostly spent. It is governed not only by indoor activities, but also affected by interconnected activities such as door opening, walking and routine tasks throughout the inside and outside of buildings and houses. Pollutant control is one of the major concerns for maintaining a sustainable indoor environment, and finding the source of pollutants is a relatively hard part of that task. Pollutants are emitted from various sources, transformed by sunlight, react with vapor in ozone and are transported into cities and from country to country. Due to these reasons, there has been high demand to monitor the transportation of particulate matters and improve air quality. The monitoring of pollutants and identification of their type and concentration enables us to track and control their generation and consequently discover reliable suitable mitigation measures to control air quality at regulated levels by contaminant source removal. However, the monitoring of pollutants, especially particulate matter generation and its transportation, is still not fully operated in atmospheric air due to its open nature and meteorological factors. Even though indoor air is relatively easier to monitor and control than outdoor air in the aspect of specific volume and contaminant source, meteorological parameters still need to be considered because indoor air is not fully separated from outdoor air flow and contaminants’ transportation. In this study, an optical approach using a spectral sensor was attempted to reveal the feasibility of wavelength and chromaticity values of reflected light from specific particles. From the analysis of reflected light of various particulate matters according to different liquid additives, parameter studies were performed to investigate which experimental conditions can contribute to the enhanced selective sensing of particulate matter. Five different particulate matters such as household dust, soil, talc powder, gypsum powder and yellow pine tree pollen were utilized. White samples were selectively identified by the peak at 720 nm for talc and 433 nm and 690 nm in wavelength for gypsum under chemical additives. Other grey household dust and yellowish soil and pine tree pollen revealed a distinct chromaticity x, y coordinates shift in vector within the maximum range from (0.22, 0.19) to (0.55, 0.48). Applicable approaches to assist current particle matter sensors and improve the selective sensing were suggested.


2020 ◽  
Vol 12 (22) ◽  
pp. 9672
Author(s):  
Mamdooh Alwetaishi ◽  
Ashraf Balabel ◽  
Ahmed Abdelhafiz ◽  
Usama Issa ◽  
Ibrahim Sharaky ◽  
...  

The study investigated the level of thermal comfort in historical buildings located at a relatively high altitude in the Arabian Desert of Saudi Arabia. The study focused on the impact of the use of thermal mass and orientation on the level of thermal performance at Shubra and Boqri Palaces. Qualitative and quantitative analyses were used in this study, including a questionnaire interview with architecture experts living at the relatively high altitude of Taif city, to obtain data and information from local experts. The computer software TAS EDSL was used along with on-site equipment, such as thermal imaging cameras and data loggers, to observe the physical conditions of the building in terms of its thermal performance. The study revealed that the experts’ age and years of experience were important aspects while collecting data from them during the survey. The use of thermal mass had a slight impact on the indoor air temperature as well as the energy consumption, but it helped in providing thermal comfort. Use of ventilation can improve thermal comfort level. Evaporative cooling technique has a considerable impact on reducing indoor air temperature with 4 °C drop, improving the thermal comfort sensation level. The novelty of this work is that, it links the outcomes of qualitative results of experts with field monitoring as well as computer modelling. This can contribute as method to accurately collect data in similar case studies.


2021 ◽  
Vol 246 ◽  
pp. 02005
Author(s):  
Eusébio Conceição ◽  
Mª Inês Conceição ◽  
João Gomes ◽  
Mª Manuela Lúcio ◽  
Hazim Awbi

The study presented in this work is performed in a virtual chamber, similar to an existing experimental chamber, with dimensions of 4.50×2.55×2.50 m3. The chamber, occupied with twelve virtual manikins, is equipped with six tables, twelve chairs, one exhaust system and one inlet system, based in confluents jets system. In the exhaust system are considered six air ducts, located above the head level, connected to the ceiling area. The inlet system, based in four vertical ducts, with 0.15 m diameter, located on the corners of the chamber, are equipped with consecutive holes, that promotes horizontal jets near the wall. The results demonstrate that when the airflow rate increases the air quality number increases, the thermal comfort number decreases and the ADI increases slightly. The predicted percentage of dissatisfied index values show that the thermal comfort level is acceptable, the dioxide carbon concentration values show that the indoor air quality is near the acceptable value and the Draught Risk is acceptable.


2021 ◽  
Vol 16 (3) ◽  
pp. 774-793
Author(s):  
Nur Baitul Izati Rasli ◽  
Nor Azam Ramli ◽  
Mohd Rodzi Ismail

This study observed the influence of different ventilation, indoor and outdoor activities (i.e., cooking, praying, sweeping, gathering, and exhaust from motorcycle) between a bungalow house (i.e., stack and cross ventilation applications) and a terrace house (i.e., one-sided ventilation application). We appraised the indoor air quality (IAQ) and thermal comfort. We monitored the indoor air contaminants (i.e., TVOC, CO, CH2O, PM10, O3, and CO2) and specific physical parameters (i.e., T, RH, and AS) for four days in the morning (i.e., 6.00 a.m. – 9.00 a.m.), morning-evening (i.e., 11.00 a.m. – 2.00 p.m.), and evening-night (i.e., 5.00 p.m. – 8.00 p.m.) sessions. The results found that cooking activities are the major activities that contributed to the increase of the TVOC, CO, PM10, O3, and CO2 concentrations in the bungalow and terrace houses. However, IAQ exceeded the Industry Code of Practice on IAQ (ICOP) limit in the terrace house. The bungalow house applies stack and cross ventilation, double area, and a long pathway of indoor air contaminants movements. Besides that, the results indicated that cooking activities worsen the ventilation system because CO2 exceeded the ICOP limit on Day 2 at 74.1 % (evening-night session) and Day 3 at 13.2 % (morning session), 11% (morning-evening session), and 50.1 % (evening-night session). Moreover, the combination of mechanical (i.e., opened all fans) and natural ventilation (i.e., opened all doors, windows, and fans) is the best application in the house without a cooking ventilator with lower indoor air movement. Furthermore, the temperatures exceeding the ICOP limit of 23-26 °C for both bungalow and terrace houses could be lower indoor air movement, which is less than the ICOP limit of 0.15-0.5 m/s and high outdoor air temperature. Therefore, it is prudent to have an efficient ventilation system for acceptable indoor air quality and thermal comfort in the family house.


2017 ◽  
Vol 180 ◽  
pp. 611-620 ◽  
Author(s):  
Mahsan Sadeghi ◽  
Richard de Dear ◽  
Bijan Samali ◽  
Graeme Wood

2021 ◽  
Vol 3 (2) ◽  
pp. 311-334
Author(s):  
Eusébio Conceição ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Maria Inês Conceição ◽  
Hazim Awbi

This paper presents a comparative study of a clean technology based on a DSF (double skin facade) used in winter conditions in the occupied buildings comfort improvement, namely the thermal comfort and air quality. The performance of a solar DSF system, the building’s thermal response, the internal thermal comfort and the internal air quality are evaluated. In this study, a DSF system, an air transport system and a HVAC (heating, ventilating and air conditioning) system based on mixing ventilation are used. The study considers a virtual chamber occupied by eight persons and equipped, in the outside environment, by three DSFs. A new horary pre-programming control methodology is developed and applied when the airflow rate is constant and the number of DSFs to operate is variable, when the airflow rate is variable and the number of DSFs to operate is constant and when the airflow rate is variable and the number of DSFs to operate is variable. This work uses a numerical model that simulates the integral building thermal behavior and an integral human thermal response. The internal air, provided by a mixing ventilating system, is warmed using the DSF system. The air temperature inside the DSF system and the virtual chamber, the thermal comfort level using the PMV index, the internal air quality using the carbon dioxide concentration and the uncomfortable hours are calculated for winter conditions. The results obtained show that the energy produced in the DSF, using solar radiation, guarantees acceptable thermal comfort conditions in the morning and in the afternoon. The indoor air quality obtained at the breathing level is acceptable. It is found that the airflow rate to be used is more decisive than the DSF operating methodology. However, when a solution is chosen that combines a ventilation rate with the number of DSF to operate, both variables throughout the day can obtain simultaneously better results for indoor air quality and thermal comfort according to the standards.


2018 ◽  
Vol 9 (1) ◽  
pp. 59-63 ◽  
Author(s):  
J. Szabo ◽  
L. Kajtar

It is a prime aim to ensure a suitable comfort level in case of office buildings. The productivity of office employees is directly influenced by the comfort. Thermal discomfort and poor indoor air quality deteriorate the intensity and quality of human work. We investigated the comfort in office buildings with on-site measurements during the summer season. The office buildings were operating with different HVAC (Heating, Ventilating and Air-Conditioning) systems: ducted fan-coil with suspended ceiling, installation, non-ducted fan-coil with floor-mounted installation, active chilled beam with fresh air supply. We evaluated the thermal comfort under PMV (Predicted Mean Vote), PPD (Predicted Percentage of Dissatisfied), the local discomfort based on DR (Draught Rate) and the IAQ (Indoor Air Quality) based on carbon dioxide concentration. The comfort measurements were evaluated. The measurements were evaluated with scientific research methods, comfort categories based on the requirements of CR 1752. The results of this comparison were presented in this article.


2012 ◽  
Vol 256-259 ◽  
pp. 2648-2651
Author(s):  
Yu Ping Sun ◽  
Neng Zhu

In this study, the oxygen contents of the indoor air quality in different climatic conditions in a chamber were real-time monitored. At the same time, ten young volunteers sit in the three different environment conditions to fill subject feeling questionnaires. The climatic conditions referred to three groups of hot and humid environment (30°C, 35°C, 40°Cdry bulb temperature and 90% relative humidity). The results reveal the oxygen content of indoor air quality slightly decreased in different thermal environments, the values within normal variations. Questionnaire statistic results indicate that the temperature and humidity control in air conditioning significantly influence the human feelings. Thirsty, head heavy, tired, irritability, distraction, chest tightness and cold sweating are the main emerging symptoms in such indoor environments. Reasonable control of indoor temperature and humidity has vital importance to indoor environment quality.


SINERGI ◽  
2019 ◽  
Vol 23 (2) ◽  
pp. 79
Author(s):  
Abraham Seno Bachrun ◽  
Ting Zhen Ming ◽  
Anastasia Cinthya

The engineering of building envelope aims is to achieve building energy efficiency which uses shading device to increase the shaded area. Also, to reduce heat gain by the building from solar radiation, this will reduce the energy load on the building. This paper aim to focuses on the deepening of technology of building envelope elements, and how the building envelope can control the thermal comfort as part of the indoor environment in a building that carries sustainability architecture. In conclusion, finally, reveal that the principles of passive design on building envelope have a great influence on the comfort level in the building. It is not possible to create a design that meets the thermal comfort requirements by emphasizing the design of building envelopes. The goal to be achieved in sustainable design is to minimize the use of the current design that takes much energy (almost14% world energy consumption) to address the issue of energy crisis lately.


Sign in / Sign up

Export Citation Format

Share Document