Application of Nanocompounds for Sustainable Agriculture System

Author(s):  
Priyanka Khati ◽  
Saurabh Gangola ◽  
Pankaj Bhatt ◽  
Rajeev Kumar ◽  
Anita Sharma

Agriculture is one of the major determining forces for the economy of India. The burgeoning population also puts more pressure of the agriculture system. To meet the requirement for future population with little arable land and limited agricultural production, doubling of crop yields is required. Development of such production systems which depend on renewable resources is an urgent requirement for sustainable agriculture. New technologies are also required to be tested and tried for the improvement of the crop production system. Nanotechnology in agriculture system is the recent hope to make sustainable agriculture a success. A high proportion of the atoms in a nanoparticle are present on the surface of a nanoparticle which accounts for higher reactivity compared with particles of macrosize. On the other side, toxicity is also a considerable concern, but using nontoxic nanoparticles like nanozeolite, nanochitosan, and nanoclay is safe. These nanocompounds show advantages in crop production without harming the soil system.

1994 ◽  
Vol 8 (2) ◽  
pp. 403-407 ◽  
Author(s):  
Donald L. Wyse

Weed science has a long history of solving weed management problems for farmers. Over the last four decades most of the solutions to weed problems have been based on herbicide technology. Thus, most crop production systems in the United States rely heavily on herbicides as the primary method of weed management. During the last decade environmentalists, farmers, agricultural scientists, policy makers, and the general public have begun to question the long-term sustainability of conventional farming systems. The sustainability of these systems is being questioned because of environmental, social, and economic concerns caused by global competition, cost of production, soil erosion, water pollution, and concern over the quality of rural life. Weeds are the major deterrent to the development of more sustainable agriculture systems. Since weeds dictate most of the crop production practices (e.g., tillage, herbicides, cultivation, row spacing) weed scientists must become the leaders of collaborative integrated approaches to agriculture systems research. New crop production systems must be developed that are less destructive to the environment, are profitable, conserve energy, and support rural community development. The goal is to facilitate the development of ecologically based alternative methods of weed management that will support crop production systems that require less tillage and herbicide inputs. To accomplish this goal, research efforts must be radically expanded in weed/crop ecology and in the development of ecologically based technologies for weed management.


2021 ◽  
Vol 32 ◽  
pp. 01008
Author(s):  
Yurii Sukhanovskii ◽  
Anastasya Prushchik ◽  
Vladimir Vitovtov ◽  
Alexandr Titov

The increase in world population and the decline in soil resources requires the increase in crop yields. Erosion and soil pollution are among the major threats to soil resources. With modern land use the rate of erosion exceeds the rate of soil formation. It is almost impossible to restore erosion soil loss. Soil pollution is a source of contaminated crop products and environment. In crop production innovative technologies are needed that must simultaneously solve three problems. The first problem is to ensure the necessary quantity and quality of crop products. The second problem is to preserve soil resources. The third one is to preserve the environment. In Russia, the increase in yields is mainly due to an increase in rates of mineral fertilizers, the use of plant protection tools and the use of varieties with a greater ability to utilize mineral fertilizers. In some regions of Russia, up to 70% of the arable land area is subject to water erosion of the soil. For the conditions of Russia, an analysis of the existing problems in assessing the long-term consequences of new technologies in crop production was carried out. Approaches have been proposed to solve some of the problems.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 675 ◽  
Author(s):  
Feledyn-Szewczyk ◽  
Radzikowski ◽  
Stalenga ◽  
Matyka

The purpose of the study was to compare earthworm communities under winter wheat in different crop production systems on arable land—organic (ORG), integrated (INT), conventional (CON), monoculture (MON)—and under perennial crops cultivated for energy purposes—willow (WIL), Virginia mallow (VIR), and miscanthus (MIS). Earthworm abundance, biomass, and species composition were assessed each spring and autumn in the years 2014–2016 using the method of soil blocks. The mean species number of earthworms was ordered in the following way: ORG > VIR > WIL > CON > INT > MIS > MON. Mean abundance of earthworms decreased in the following order: ORG > WIL > CON > VIR > INT > MIS > MON. There were significantly more species under winter wheat cultivated organically than under the integrated system (p = 0.045), miscanthus (p = 0.039), and wheat monoculture (p = 0.002). Earthworm abundance was significantly higher in the organic system compared to wheat monoculture (p = 0.001) and to miscanthus (p = 0.008). Among the tested energy crops, Virginia mallow created the best habitat for species richness and biomass due to the high amount of crop residues suitable for earthworms and was similar to the organic system. Differences in the composition of earthworm species in the soil under the compared agricultural systems were proven. Energy crops, except miscanthus, have been found to increase earthworm diversity, as they are good crops for landscape diversification.


Plant Disease ◽  
2016 ◽  
Vol 100 (1) ◽  
pp. 10-24 ◽  
Author(s):  
Jay Ram Lamichhane ◽  
Silke Dachbrodt-Saaydeh ◽  
Per Kudsk ◽  
Antoine Messéan

Whether modern agriculture without conventional pesticides will be possible or not is a matter of debate. The debate is meaningful within the context of rising health and environmental awareness on one hand, and the global challenge of feeding a steadily growing human population on the other. Conventional pesticide use has come under pressure in many countries, and some European Union (EU) Member States have adopted policies for risk reduction following Directive 2009/128/EC, the sustainable use of pesticides. Highly diverse crop production systems across Europe, having varied geographic and climatic conditions, increase the complexity of European crop protection. The economic competitiveness of European agriculture is challenged by the current legislation, which banned the use of many previously authorized pesticides that are still available and applied in other parts of the world. This challenge could place EU agricultural production at a disadvantage, so EU farmers are seeking help from the research community to foster and support integrated pest management (IPM). Ensuring stable crop yields and quality while reducing the reliance on pesticides is a challenge facing the farming community is today. Considering this, we focus on several diverse situations in European agriculture in general and in European crop protection in particular. We emphasize that the marked biophysical and socio-economic differences across Europe have led to a situation where a meaningful reduction in pesticide use can hardly be achieved. Nevertheless, improvements and/or adoption of the knowledge and technologies of IPM can still achieve large gains in pesticide reduction. In this overview, the current pest problems and their integrated management are discussed in the context of specific geographic regions of Europe, with a particular emphasis on reduced pesticide use. We conclude that there are opportunities for reduction in many parts of Europe without significant losses in crop yields.


2018 ◽  
pp. 91-92
Author(s):  
Márta Birkás

Soil management represents two important tasks that are harmonization of the soil protection with demands of the crop to be grown on the given land under prevailing farming condition. Further goals are to preserve and/or develop the soil physical, biological and chemical condition and to avoid the unfavourable changes of the soil biological activity and the soil structure. Classical authors emphasised the importance of creating proper seedbed for plants. In the physical approach, tillage was believed to play an important role in controlling soil processes. Consequently, the period of several centuries dominated by this approach is referred to as the era of crop-oriented tillage (Birkás et al., 2017). The overestimation of the importance of crop requirements resulted in damaging the soils, which inevitably led to turn to the soil-focused tillage. Since the first years of climate change, as the new trends have raised concern, tillage must be turned into a climate-focused effort with the aim of reducing climate-induced stresses through improving soil quality. The development of soil management has always been determined by the economical background. At the same time, deteriorating site conditions have contributed to the conception of new tillage trends by forcing producers to find new solutions (e.g. dry farming theory in the past or adaptable tillage theory nowadays). Győrffy (2009) recited the most important keywords were listed in 2001 and that seemed to be important in the future of crop production. These keywords (endeavours) were as follows: − Biofarming, organic farming, alternative farming, biodynamic farming, low input sustainable agriculture; − Mid-tech farming, sustainable agriculture, soil conservation farming, no till farming, environmentally sound, environmentally friendly, diversity farming; − Crop production system, integrated pest management, integrated farming, high-tech farming; − Site specific production, site-specific technology, spatial variable technology, satellite farming; − Precision farming. Győrffy’s prognosis proved to be realistic and the efforts mentioned above have mostly been implemented. New challenges have also appeared in soil management in relation to the last decades. The most important endeavours for the future are: 1) Preserving climate-induced stresses endangering soils. 2) Turn to use climate mitigation soil tillage and crop production systems. 3) Applying soil management methods are adaptable to the different soil moisture content (over dried or wet may be quite common). 4) Use effectual water conservation tillage. 5) Use soil condition specific tillage depth and method. 6) Adapting the water and soil conservation methods in irrigation. 7) Preserving and improving soil organic matter content by tillage and crop production systems. 8) Considering that stubble residues are matter for soil protection, humus source and earthworm’ feed. 9) Site-specific adoption of green manure and cover crops. 10) Applying site-adopted (precision) fertilization and crop protection. Considering the development in agriculture, new endeavours will occur before long.


2020 ◽  
pp. 21-30
Author(s):  
Agbakoba Augustine Azubuike ◽  
Ema Idongesit Asuquo ◽  
Agbakoba Victor Chike

The recent push for precision agriculture has resulted in the deployment of highly sophisticated Information and Communication Technology (ICT) gadgets in various agricultural practices and methods. The introduction of ICT devices has been linked to significant improvements in agricultural activities. These devices have been shown to enhance the optimal management of critical resources such as water, soil, crop and arable land. Again, ICT devices are increasingly attractive due to their flexibility, ease of operation, compactness and superior computational capabilities. Especially when in comparison to the mundane methods previously used by most small- and large-scale farmers. For instance, ICT devices such as Unmanned Aerial Vehicles (UAVs) also referred to as drones, are increasingly being deployed for remote sensing missions where they capture high quality spatial resolution images. The data generated by these UAVs provide much needed information that aids in early spotting of soil degradation, crop conditions, severity of weed infestation and overall monitoring of crop yield variability. This enables farmers to acquire on-the-spot information that will enhance decision making within a short period of time, which will in turn contribute to reduction in running cost and potentially increase yield. It is safe to say that full potentials of drones are yet to be fully utilized in the Nigerian agricultural sector. This is due to several factors; most notably are the numerous challenges that accompany the introduction and adoption of much new technologies. Other factors; include high cost of technology, inadequate or total lack of skilled labour, poor awareness and low-farmer literacy. Therefore, this review work highlights the global progress recorded as a result of the recent application of drones for soil management and efficient crop production. Furthermore, key discussions surrounding the application of drones for precision agriculture and the possible drawbacks facing the deployment of such technology in Nigeria has been covered in this work.


2005 ◽  
Vol 56 (11) ◽  
pp. 1303
Author(s):  
John C Radcliffe

Policy issues have impacted on cropping since the earliest days of European colonial settlement. Following emigration to Australia, secure land titles were required, with the Torrens title system being progressively introduced from 1858. This provided the basis for landholders to be able to borrow to develop land. Closer settlement policies were adopted, underpinned by the development of transport infrastructure. The demand for education resulted in Agricultural Colleges in the colonies from the 1880s, with Departments of Agriculture soon afterwards. Federation of the colonies into the Commonwealth of Australia and the creation of the states resulted in a separation of powers, with the Commonwealth assuming responsibility for external powers including overseas marketing, import quarantine, health and quality standards of exports and credit and financial powers. Natural resource management matters and education were among those remaining with the states. Regular intergovernmental meetings were held to discuss research from 1927 and a broader range of agricultural issues from 1935. The Great Depression in the 1930s, poor commodity prices and serious land degradation led to government support for debt reconstruction and the introduction of soil conservation services. Realising the need for innovation to successfully compete on world markets, farmers, led by cereal growers, petitioned for the establishment of statutory research programs with joint grower/government funding from the 1950s. These have been remarkably successful, with the uptake of new technologies contributing to an average multifactor productivity growth of Australian grain farms by 3.3% per year between 1977–78 and 2001–02. With community and policy recognition of the need to conserve natural resources, the Commonwealth Government is playing an increasing role in this area. Farmers are required to meet standards for the use of agricultural chemicals and for occupational safety, welfare and environmental protection. The states have taken a conservative stand against the growing of genetically modified food crops in the name of protecting overseas markets. New water management regimes are coming into place with the separation of water titles from land. Market-based instruments are being introduced to encourage more sustainable production systems and saleable ecosystem services. Research and innovation along with complementary policy initiatives will continue to underpin farmers’ adaptive management skills to ensure dryland crop producers have sustainable production systems while remaining competitive in world markets.


2006 ◽  
Vol 86 (4) ◽  
pp. 941-950 ◽  
Author(s):  
Chantal Hamel ◽  
Désiré-Georges Strullu

Arbuscular mycorrhizal fungi (AMF) are multipurpose organisms with complex ecological ramifications in the soil system that have been difficult to study and understand. The phytocentric concept of AMF that has prevailed since the naming of these organisms is being replaced by a holistic vision recognizing that AMF are a key element of soil functioning and health rather than a plant root component. Recent advances in knowledge brought about by new techniques for soil microbiology research open the way to AMF management in crop production. Arbuscular mycorrhizal fungi may influence crop development, even in phosphorus-rich soils. However, growing crops in soil with lower fertility would optimize the expression of the multiple beneficial effects of AMF in agro-ecosystem and reduce nutrient seepage to the environment. The consideration of the soil mycorrhizal potential within the framework of soil testing and fertilization recommendations, the development of improved inoculants and signal molecules to manipulate AMF and the development of cultivars with improved symbiotic qualities would insure the production of good crop yields while improving agroecosystems’ sustainability. Key words: Arbuscular mycorrhizal fungi management, field crop production, agriculture, soil quality, arbuscular mycorrhizal effect


2007 ◽  
Vol 22 (4) ◽  
pp. 290-296 ◽  
Author(s):  
P.M. Guthiga ◽  
J.T. Karugia ◽  
R.A. Nyikal

AbstractDraft animal power (DAP) has been identified as an environmentally friendly technology that is based on renewable energy and encompasses integration of livestock and crop production systems. Draft animal technology provides farmers with a possibility to cheaply access and use manure from the draft animals and farm power needed to apply renewable practices for land intensification. Compared to motorized mechanization, DAP is viewed as an appropriate and affordable technology especially for small-scale farmers in developing countries who cannot afford the expensive fuel-powered tractor mechanization. However, it is apparent that there is no consensus among researchers on how it affects crop yields, profit and production efficiency when applied in farm operations. This study addressed the question of whether using DAP increases economic efficiency of smallholder maize producers in central Kenya. Results of the study are derived from a sample of 80 farmers, 57% of whom used draft animals while 43% used hand hoes in carrying farm operations. In the study area, draft animals are almost exclusively used for land preparation and planting, with very few farmers applying them in the consecutive operations such as weeding. A profit function was estimated to test the hypothesis of equal economic efficiency between ‘DAP’ and ‘hoe’ farms. The results showed that farmers who used DAP obtained higher yields and operated at a higher economic efficiency compared to those who used hand hoes. The analysis underscores the viability of DAP in increasing profitability of small-scale farms; however, other aspects of the technology, such as affordability of the whole DAP package, availability of appropriate implements and skills of using the technology, must be taken into account when promoting adoption of DAP technology.


2017 ◽  
Vol 31 (3) ◽  
pp. 341-347 ◽  
Author(s):  
Michael Walsh ◽  
Jackie Ouzman ◽  
Peter Newman ◽  
Stephen Powles ◽  
Rick Llewellyn

HWSC systems that target weed seed production during harvest have been in use in Australian crop production systems for over 30 years. Until recently, though, grower adoption of these systems has been relatively low. It is now apparent with the introduction of a range of new weed seed targeting systems that there is renewed grower interest in the use of this approach to weed control. With the aim of determining the current adoption and use of HWSC systems, 600 crop producers from throughout Australia’s cropping regions were interviewed on their adoption and use of these systems. This survey established that 43% of Australian growers are now routinely using HWSC to target weed seed production during grain harvest. The adoption of narrow-windrow burning (30%) was considerably greater than the other currently available techniques of chaff tramlining (7%), chaff carts (3%), bale-direct system (3%), and the Harrington Seed Destructor (HSD) (<1%). When growers were asked about their future use of these systems 82% indicated that they would be using some form of HWSC within five years. Grower preferences for future HWSC use were primarily for either narrow-windrow burning (42%) or the HSD (29%). This very high level of current and potential HWSC adoption signifies that HWSC is now considered an established weed control practice by Australian growers.


Sign in / Sign up

Export Citation Format

Share Document