scholarly journals Toward a Reduced Reliance on Conventional Pesticides in European Agriculture

Plant Disease ◽  
2016 ◽  
Vol 100 (1) ◽  
pp. 10-24 ◽  
Author(s):  
Jay Ram Lamichhane ◽  
Silke Dachbrodt-Saaydeh ◽  
Per Kudsk ◽  
Antoine Messéan

Whether modern agriculture without conventional pesticides will be possible or not is a matter of debate. The debate is meaningful within the context of rising health and environmental awareness on one hand, and the global challenge of feeding a steadily growing human population on the other. Conventional pesticide use has come under pressure in many countries, and some European Union (EU) Member States have adopted policies for risk reduction following Directive 2009/128/EC, the sustainable use of pesticides. Highly diverse crop production systems across Europe, having varied geographic and climatic conditions, increase the complexity of European crop protection. The economic competitiveness of European agriculture is challenged by the current legislation, which banned the use of many previously authorized pesticides that are still available and applied in other parts of the world. This challenge could place EU agricultural production at a disadvantage, so EU farmers are seeking help from the research community to foster and support integrated pest management (IPM). Ensuring stable crop yields and quality while reducing the reliance on pesticides is a challenge facing the farming community is today. Considering this, we focus on several diverse situations in European agriculture in general and in European crop protection in particular. We emphasize that the marked biophysical and socio-economic differences across Europe have led to a situation where a meaningful reduction in pesticide use can hardly be achieved. Nevertheless, improvements and/or adoption of the knowledge and technologies of IPM can still achieve large gains in pesticide reduction. In this overview, the current pest problems and their integrated management are discussed in the context of specific geographic regions of Europe, with a particular emphasis on reduced pesticide use. We conclude that there are opportunities for reduction in many parts of Europe without significant losses in crop yields.

2021 ◽  
Vol 7 ◽  
pp. 133-150
Author(s):  
Jiban Shrestha ◽  
Subash Subedi ◽  
Krishna Prasad Timsina ◽  
Sudeep Subedi ◽  
Meena Pandey ◽  
...  

Sustainable intensification of agriculture is a good approach for reducing the yield gap without exacerbating the current condition of the environmental components, which is a big challenge for agriculture in the modern world. This review provides a summary of the role and approaches of sustainable intensification in agriculture which offer ways to increase crop production and create long-term sustainability in agriculture production. The current demand for food has continued to rise as a result of the world's rapidly increasing population. In order to increase crop/food production, agricultural systems should be intensified by more sustainable practices, as well as by reforming existing production systems/techniques and diversifying them into newer and more profitable enterprises. Despite the heavy use of inputs, farmers have recently been unable to achieve optimal crop yields. The judicious use of agricultural inputs, combined with improved management techniques, is important for advancing sustainable intensification. New scientific techniques in agronomic practices, as well as improved farm mechanization, are helping to boost resource use efficiency in sustainable crop production. The sustainable agricultural intensification is necessary to increase the agricultural productivity under the changing and adverse climatic conditions while maintaining healthy production practices.


1980 ◽  
Vol 12 (1) ◽  
pp. 165-171 ◽  
Author(s):  
Thomas R. Harris ◽  
Harry P. Mapp

Climatic conditions in semiarid regions like the Oklahoma Panhandle result in wide fluctuations in rainfall, dryland crop yields, and returns to agricultural producers in the area. Irrigated crop production increases peracre yields and significantly reduces fluctuations in yields and net returns.Irrigated production of food and fiber in the Oklahoma Panhandle has developed rapidly during the past three decades, increasing from 11,500 to 385,900 acres since 1950 (Schwab). The primary source of irrigation water in the area is the Ogallala Formation, an aquifer underlying much of the Great Plains region. Until the past couple of years, the presence of relatively low cost natural gas led producers to expand irrigated production and apply high levels of water to crops irrigated in the area.


2019 ◽  
Vol 11 (7) ◽  
pp. 2104 ◽  
Author(s):  
Chong Wang ◽  
Jiangang Liu ◽  
Shuo Li ◽  
Ting Zhang ◽  
Xiaoyu Shi ◽  
...  

Confronted with the great challenges of globally growing populations and food shortages, society must achieve future food security by increasing grain output and narrowing the gap between potential yields and farmers’ actual yields. This study attempts to diagnose the climatic and agronomic dimensions of oat yield gaps and further to explore their restrictions. A conceptual framework was put forward to analyze the different dimensions of yield gaps and their limiting factors. We quantified the potential yield (Yp), attainable yield (Yt), experimental yield (Ye), and farmers’ actual yield (Ya) of oat, and evaluated three levels of yield gaps in a rain-fed cropping system in North and Northeast China (NC and NEC, respectively). The results showed that there were great differences in the spatial distributions of the four kinds of yields and three yield gaps. The average yield gap between Yt and Ye (YG-II) was greater than the yield gap between Yp and Yt (YG-I). The yield gap between Ye and Ya (YG-III) was the largest among the three yield gaps at most sites, which indicated that farmers have great potential to increase their crop yields. Due to non-controllable climatic conditions (e.g., light and temperature) for obtaining Yp, reducing YG-I is extremely difficult. Although YG-II could be narrowed through enriching soil nutrients, it is not easy to improve soil quality in the short term. In contrast, narrowing YG-III is the most feasible for farmers by means of introducing high-yield crop varieties and optimizing agronomic managements (e.g., properly adjusting sowing dates and planting density). This study figured out various dimensions of yield gaps and investigated their limiting factors, which should be helpful to increase farmers’ yields and regional crop production, as long as these restrictions are well addressed.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 192 ◽  
Author(s):  
Domenico Ronga ◽  
Elisa Biazzi ◽  
Katia Parati ◽  
Domenico Carminati ◽  
Elio Carminati ◽  
...  

Microalgae are attracting the interest of agrochemical industries and farmers, due to their biostimulant and biofertiliser properties. Microalgal biostimulants (MBS) and biofertilisers (MBF) might be used in crop production to increase agricultural sustainability. Biostimulants are products derived from organic material that, applied in small quantities, are able to stimulate the growth and development of several crops under both optimal and stressful conditions. Biofertilisers are products containing living microorganisms or natural substances that are able to improve chemical and biological soil properties, stimulating plant growth, and restoring soil fertility. This review is aimed at reporting developments in the processing of MBS and MBF, summarising the biologically-active compounds, and examining the researches supporting the use of MBS and MBF for managing productivity and abiotic stresses in crop productions. Microalgae are used in agriculture in different applications, such as amendment, foliar application, and seed priming. MBS and MBF might be applied as an alternative technique, or used in conjunction with synthetic fertilisers, crop protection products and plant growth regulators, generating multiple benefits, such as enhanced rooting, higher crop yields and quality and tolerance to drought and salt. Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1022
Author(s):  
Ireri Alejandra Carbajal-Valenzuela ◽  
Gabriela Medina-Ramos ◽  
Laura Helena Caicedo-Lopez ◽  
Alejandra Jiménez-Hernández ◽  
Adrian Esteban Ortega-Torres ◽  
...  

Agricultural systems face several challenges in terms of meeting everyday-growing quantities and qualities of food requirements. However, the ecological and social trade-offs for increasing agricultural production are high, therefore, more sustainable agricultural practices are desired. Researchers are currently working on diverse sustainable techniques based mostly on natural mechanisms that plants have developed along with their evolution. Here, we discuss the potential agricultural application of extracellular DNA (eDNA), its multiple functioning mechanisms in plant metabolism, the importance of hormetic curves establishment, and as a challenge: the technical limitations of the industrial scale for this technology. We highlight the more viable natural mechanisms in which eDNA affects plant metabolism, acting as a damage/microbe-associated molecular pattern (DAMP, MAMP) or as a general plant biostimulant. Finally, we suggest a whole sustainable system, where DNA is extracted from organic sources by a simple methodology to fulfill the molecular characteristics needed to be applied in crop production systems, allowing the reduction in, or perhaps the total removal of, chemical pesticides, fertilizers, and insecticides application.


2020 ◽  
Author(s):  
Thomas M. Chaloner ◽  
Sarah J. Gurr ◽  
Daniel P. Bebber

AbstractGlobal food security is strongly determined by crop production. Climate change will not only affect crop yields directly, but also indirectly via the distributions and impacts of plant pathogens that can cause devastating production losses. However, the likely changes in pathogen pressure in relation to global crop production are poorly understood. Here we show that disease risk for 79 fungal and oomycete crop pathogens will closely track projected yield changes in 12 major crops over the 21st Century. For most crops, yields are likely to increase at high latitudes but disease risk will also grow. In addition, the USA, Europe and China will experience major changes in pathogen assemblages. In contrast, while the tropics will see little or no productivity gains, the disease burden is also likely to decline. The benefits of yield gains will therefore be tempered by the increased burden of crop protection.


2017 ◽  
Vol 32 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Zahoor A. Ganie ◽  
Simranpreet Kaur ◽  
Prashant Jha ◽  
Vipan Kumar ◽  
Amit J. Jhala

Giant ragweed is one of the most competitive annual broadleaf weeds in corn and soybean crop production systems in the United States and eastern Canada. Management of giant ragweed has become difficult due to the evolution of resistance to glyphosate and/or acetolactate synthase (ALS)-inhibitor herbicides and giant ragweed’s ability to emerge late in the season, specifically in the eastern Corn Belt. Late-season herbicide application may reduce seed production of weed species; however, information is not available about late-season herbicide applications on giant ragweed seed production. The objective of this study was to evaluate the effect of single or sequential late-season applications of 2,4-D, dicamba, glyphosate, and glufosinate on inflorescence injury and seed production of glyphosate-resistant (GR) giant ragweed under greenhouse and field conditions (bare ground study). Single and sequential applications of glufosinate resulted in as much as 59 and 60% injury to giant ragweed inflorescence and as much as 78 and 75% reduction in seed production, respectively, under field and greenhouse conditions. In contrast, single or sequential applications of 2,4-D or dicamba resulted in ≥ 96% inflorescence injury and reduction in seed production in the field as well as in greenhouse studies. The results indicated that 2,4-D or dicamba are effective options for reducing seed production of glyphosate-resistant giant ragweed even if applied late in the season. Targeting weed seed production to decrease the soil seedbank will potentially be an effective strategy for an integrated management of GR giant ragweed.


2016 ◽  
Vol 1 (90) ◽  
pp. 71-76
Author(s):  
Y. Soroka ◽  
Y.A. Tarariko ◽  
R.V. Saydak

The purpose of research - a comprehensive assessment of the potential agroresource North-Central Steppe of Ukraine, set limitipuyuschie factors to improve the productivity of agriculture. During the robot conventional research methods were used: field, laboratory, analytical, comparative, kompyuternoy simulation modeling, and system generalization of the results. Experiental part held in a stationary field experiment Zaporozhye experimental station Of Institute oil culture NAAS Studies have shown that the systematic application of fertilizers on a range of agro, chemical, physical, agrohimichesih indicators studied soil has Visokiy potential fertility. Surfacing Systems of soil on crop rotation productivity impact is immaterial. One can only note the trend for the most minor ways of loosening the soil with mulch. The test crop rotation composition simulates one of the most intensive farming options. Indicators of productivity and the variation coefficient of variation it indicates a fairly low level of realization of the potential fertility of chernozem ordinary, which is explained on the one hand, the steady downward trend in the annual water balance, on the other hand, promotion of a balance of humus, nitrogen, phosphorus and potassium fertilizers at the studied systems. The dependence of the yield of the agro-climatic conditions considered by the example of the main cereal region - winter wheat. It was found that the greatest impact on the implementation of crop production potential are hydrothermal conditions of May - June. Analysis of the results of research allowed to evaluate the potential agroresource North Steppe and to establish the impact of the major factors in the formation of crop yields. Irrigation in this zone is the most important factor for improving productivity of crops, and its implementation in 70% of rotations may increase the productivity of not less than 1.8 times.


2007 ◽  
Vol 22 (4) ◽  
pp. 290-296 ◽  
Author(s):  
P.M. Guthiga ◽  
J.T. Karugia ◽  
R.A. Nyikal

AbstractDraft animal power (DAP) has been identified as an environmentally friendly technology that is based on renewable energy and encompasses integration of livestock and crop production systems. Draft animal technology provides farmers with a possibility to cheaply access and use manure from the draft animals and farm power needed to apply renewable practices for land intensification. Compared to motorized mechanization, DAP is viewed as an appropriate and affordable technology especially for small-scale farmers in developing countries who cannot afford the expensive fuel-powered tractor mechanization. However, it is apparent that there is no consensus among researchers on how it affects crop yields, profit and production efficiency when applied in farm operations. This study addressed the question of whether using DAP increases economic efficiency of smallholder maize producers in central Kenya. Results of the study are derived from a sample of 80 farmers, 57% of whom used draft animals while 43% used hand hoes in carrying farm operations. In the study area, draft animals are almost exclusively used for land preparation and planting, with very few farmers applying them in the consecutive operations such as weeding. A profit function was estimated to test the hypothesis of equal economic efficiency between ‘DAP’ and ‘hoe’ farms. The results showed that farmers who used DAP obtained higher yields and operated at a higher economic efficiency compared to those who used hand hoes. The analysis underscores the viability of DAP in increasing profitability of small-scale farms; however, other aspects of the technology, such as affordability of the whole DAP package, availability of appropriate implements and skills of using the technology, must be taken into account when promoting adoption of DAP technology.


Author(s):  
A. Yu. Izmaylov

A necessary condition for a sharp increase in production is the introduction of digital smart technologies. With the use of digital technologies, it is possible to achieve a significant increase in labor productivity and crop yields, reduce energy and material costs. Digital machine technologies should be used in crop production, animal husbandry, power engineering, storage and processing of agricultural products. The effective production development requires a comprehensive system of management of agricultural enterprises, which, based on the obtained data, will ensure timely and correct processing. In digital machines and agricultural technologies, four main areas can be identified: monitoring of environment and parameters of processes; transmission and storage of information; artificial intelligence and cloud technologies; implementation of management decisions by robotic technical means. The main objects of monitoring are soils, plants, animals, weather and climatic conditions, technical means, and technological processes. Ground and air monitoring tools receive and transmit real-time data to the cloud platform. Artificial intelligence optimizes technological operations and gives a command to the actuators using the monitoring data.


Sign in / Sign up

Export Citation Format

Share Document