The Computation of Grinding Parameters for the Modified Shaper Cutter

2011 ◽  
Vol 121-126 ◽  
pp. 2701-2705
Author(s):  
Chao Huang ◽  
Guo Long Li

Grinding process is regarded as the most effective way to generate the tooth profile of spur shaper cutter. However, for the purpose of generating a tip chamfer of gear, the semi-topping is always required on the tooth surface of shaper cutter, which is difficult to process by grinding wheel. This paper proposes a method to compute the profile of grinding wheel which is used to process the spur shaper cutter with a semi–topping. Firstly, translate the points on the surface of shaper cutter into auxiliary rack; Secondly, building the relationship between the coordinate system of grinding wheel and coordinate system of auxiliary rack; Lastly, the points on the surface of auxiliary rack are translated into the coordinate system of grinding wheel based on the relative motion between the grinding wheel and shaper cutter.

2009 ◽  
Vol 416 ◽  
pp. 540-545
Author(s):  
Ping Yan Bian ◽  
Bo Zhao ◽  
Yu Li

In processing of engineering ceramics materials with diamond grinding wheel, grinding heat is one of vital factors influencing workpiece surface quality. Grinding parameters have important influences on workpiece surface temperature distributions. Contrast experiments on grinding temperature of nanoZrO2 under common and two dimensional ultrasonic vibration grinding(TDUVG) were carried out in this paper by manual thermocouple method. The relationship between grinding parameters and grinding temperature was clarified through theoretical analysis and experiment confirmation. The research results show that with the increases of grinding depth, grinding speed, and decrease of working table speed, the workpiece’s surface temperature would heighten accordingly. Furthermore, comparing with high surface layer temperature in common grinding, which often results in grinding burn, TDUVG can reduce grinding temperature effectively.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Chin-Lung Huang ◽  
Zhang-Hua Fong ◽  
Shi-Duang Chen ◽  
Kuang-Rong Chang

Although the Isoform® lengthwise-reciprocating grinding process is considered as one of the most accurate methods for generating the tooth profile geometry of a helical gear shaping cutter, the tooth profile accuracy produced by the Isoform® with a straight cone grinding wheel is not accurate enough for high precision requirement. That is why the shaper cutter is used as a rough cutting tool for most cases. A third-order profile correction to the cone grinding wheel is proposed to increase the accuracy of the work gear profile. A novel topography is developed to schematically show the work gear tooth profile accuracy cut by a resharpened shaping cutter. The profile errors corresponding to the varied resharpening depth are shown in the topography with information of true involute form diameter and semitopping depth. The usable resharpening depth of the shaping cutter can be determined by this topography. The numerical result indicates that third-order correction reduces the profile error of the major cutter enveloping gear to submicro and extends the resharpening depth.


2007 ◽  
Vol 364-366 ◽  
pp. 728-732 ◽  
Author(s):  
Guo Fu Gao ◽  
Chuan Shao Liu ◽  
Bo Zhao ◽  
Feng Jiao ◽  
Qing Hua Kong

As one of the key factors grinding heat has a significant effect on the ground surface quality in grinding engineering ceramics using diamond grinding wheel. Differences between mechanical and physical performances of ceramic materials and grinding parameters have important influences on the surface temperature distribution. In the present research, experiments with/without ultrasonic assistance were carried out to study the temperature characteristics in the grinding field by thermocouple in grinding ZrO2 and Al2O3 engineering ceramics respectively. Moreover, the theoretical analysis and the experiment confirmation for the relationship between grinding parameters and temperature have been discussed. The results show that the further the heat source keeps against grinding surface, the lower the peak value of temperature, and the surface temperature increases with the grinding depth, grinding speed and work table speed. According to the results of orthogonal experiments on grinding parameters, the grinding depth is the most important factor affecting the grinding temperature on the workpiece surface.


2022 ◽  
Vol 16 (1) ◽  
pp. 12-20
Author(s):  
Gen Uchida ◽  
Takazo Yamada ◽  
Kouichi Ichihara ◽  
Makoto Harada ◽  
Tatsuya Kohara ◽  
...  

In the grinding process, the grinding wheel surface condition changes depending on the dressing conditions, which affects the ground surface roughness and grinding resistance. Several studies have been reported on the practical application of dressing using prismatic dressers in recent years. However, only a few studies that quantitatively evaluate the effects of differences in dressing conditions using prismatic dresser on the ground surface roughness and grinding resistance have been reported. Thus, this study aims to evaluate quantitatively the effect of the difference in dressing conditions using the prismatic dresser on the ground surface roughness and grinding resistance by focusing on the dressing resistance. In the experiment, dressing is performed by changing the dressing lead and the depth of dressing cut with a prismatic dresser, and the ground surface roughness and grinding resistance are measured. Consequently, by increasing the dressing lead and the depth of dressing cut, the ground surface roughness increased, and the grinding resistance decreased. This phenomenon was caused by the increase in dressing resistance when the dressing lead and the depth of dressing cut were increased, which caused a change in the grinding wheel surface condition. Furthermore, the influence of the difference in dressing conditions using the prismatic dresser on the ground surface roughness and grinding resistance can be quantitatively evaluated by using the dressing resistance.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1352 ◽  
Author(s):  
Shengyong Zhang ◽  
Genbao Zhang ◽  
Yan Ran ◽  
Zhichao Wang ◽  
Wen Wang

(1) The alloy material 20CrMnTiH is widely used in gear manufacturing, but difficult to process, and its quantity (efficiency) and quality (surface quality) are generally negative correlation indicators. As a difficult but realistic problem, it is of important practical significance to explore how to efficiently grind high-precision low-carbon alloy gear workpieces. (2) Firstly, the pixel method was applied to analyze the grinding principles and explore the grinding parameters—the grinding wheel speed and grinding wheel frame moving speed—as well as the feed rate, which impacts the grinding indicators. Secondly, based on the ceramic microcrystalline corundum grinding wheel and the 20CrMnTiH gear workpiece, controlled experiments with 28 groups of grinding parameters were conducted. Moreover, the impact curves of the grinding parameters on the grinding indicators—the grinding efficiency, grinding wheel life, and surface roughness—were obtained by the multiple linear regression method. Finally, the multi-objective optimization method was used to comprehensively optimize the grinding process. (3) Compared with the traditional grinding process, under optimized grinding parameters, the 20CrMnTiH gear workpieces have a lower surface roughness and a longer grinding wheel life, and require a shorter time to achieve grinding accuracy. (4) The grinding experiments showed that the grinding parameters are linearly related to the grinding indicators. The optimization results show that the precision, efficiency, and economy of the 20CrMnTiH gear grinding process have been improved via the comprehensive optimization of the grinding parameters.


2021 ◽  
Vol 23 (3) ◽  
pp. 6-19
Author(s):  
Dmitrii Ardashev ◽  
◽  
Aleksander Zhukov ◽  

Introduction. To assess the current state of the technological system (TS) during grinding, it is preferable to use indirect criteria. Such approaches, in contrast to direct measurement methods, can be carried out without interrupting the production process. The main parameters used in the indirect assessment of the state of the cutting tool are the state of the workpiece (before and after processing), thermal and electrical characteristics of the cutting zone, vibroacoustic vibrations of the process, and force measurements. The work is devoted to the study of the acoustic parameters of grinding as a sufficiently informative and least resource-intensive characteristic. The relevance of the development of methods for assessing the state of the vehicle based on sound and topographic characteristics has many aspects, the main of which are applicability in grinding control, predicting the state of the cutting tool and planning the operations of the technological process. The aim of the work is to develop a mathematical model of the dependence of the vibroacoustic parameters of the external circular plunge-cut grinding process on the macro-roughness of the polished sample. The development of such a model is a necessary step in the design of a methodology for predicting the state of a tool. Accordingly, the subject of work is presented by two parameters simultaneously – the sound level arising in the process of grinding and the deviation of the surface shape of the ground images from cylindricality. The research methods used to achieve the designated aim were following: an experiment to study the sound phenomena accompanying round external plunge-cut grinding; measurement of macro-roughness of the surface of the samples, subjected to processing, using a coordinate measuring machine; correlation and regression analysis to obtain mathematical dependencies. Results and discussion. Two particular multiple linear regression models are obtained that describe the effect of the infeed rate and the operating time of the grinding wheel on the sound level during grinding and on deviations from the cylindricality of the processed samples. On the basis of particulars, a general model is developed that establishes the relationship between the sound characteristic and the macro-roughness index of the treated surface. It is shown that the sound characteristics (for example, the sound level) can be used as an indirect indicator of the current state of the vehicle, which makes it possible to assess the level of vibrations and, accordingly, to predict the quality of products.


Author(s):  
Shuying Yang ◽  
Weifang Chen ◽  
Zhiqiang Wang ◽  
Yanfeng Zhou

Gear hob is an important tool that is most used in gear processing. Hob accuracy directly exerts an overwhelming influence on the quality of the processed gear. Generally, the hob tooth profile accuracy is mainly determined by relief grinding process. Studies on tooth profile errors of gear hobs caused by severe friction and cutting with the high-speed rotation of the wheel during the form grinding machining of hobs are limited. Thus, a theoretical model of the tooth profile error prediction under different machining parameters was established based on the analysis of coupling influence of high temperature and high strain rate on gear hobs in the relief grinding process. The model was completed on the basis of the dynamic explicit integral finite element method of thermo-mechanical coupling. Through the prediction model, the influence of the grinding depth ap, feed speed Vw and grinding speed Vs on the tooth profile error can be analysed. In addition, an algorithm for accurately calculate the grinding wheel axial profile by combining instantaneous envelope theory and hob normal tooth profile was proposed. The hob relief grinding experiments were carried out using the proposed grinding wheel profile algorithm. The relative error of the prediction obtained by comparing the calculation results of the prediction model with the experimental results is within 10%. Results prove the validity of the prediction model. This finding is greatly important for optimising the accuracy of hob relief grinding.


Author(s):  
Xianglong Zhu ◽  
Yu Li ◽  
Zhigang Dong ◽  
Renke Kang ◽  
Shang Gao ◽  
...  

Back Grinding of Wafer with Outer Rim (BGWOR) is a new method for carrier-less thinning of silicon wafers. In this paper, the simulation model of grinding marks of wafer in BGWOR was developed. With the model, the relationship between process parameters, including wheel rotational speed, wafer rotational speed, wheel infeed rate, spark out time and the protruding height of the abrasive grains in the grinding wheel, and grinding marks was discussed. Reasonable grinding parameters to control the grinding marks were also proposed. The model was verified by the experiments of BGWOR. The results showed that: (1) The pattern of the grinding marks of the wafers in BGWOR was depended on the grinding wheel rotational speed, the wafer rotational speed, the wheel infeed rate, the spark out time and the protruding height of the abrasive grains on the grinding wheel; (2) The angle between two adjacent grinding marks changes as the variation of the wheel rotational speed and wafer rotational speed; (3) The grinding marks density can be controlled by selecting the proper ratio of wheel speed to wafer speed. The depth of grinding marks can be reduced by increasing the spark out time and reducing the protruding height of the abrasive grains.


2013 ◽  
Vol 774-776 ◽  
pp. 1107-1111
Author(s):  
Yong Qiang Zhao ◽  
Sheng Dun Zhao ◽  
Hong Ling Hou

With the accuracy improvement of twin-screw compressor rotor machining, higher requirement of crew rotor grinded equipment and grinding process is put forward. Based the theory of screw grinding and CNC forming grinding wheel dress technology, the relationship between machine working parameters, CNC grinding wheel dressing parameters and screw rotor grinded process parameters are investigated, and the relationship between CNC grinding wheel dressing parameters and the screw rotor grinded process parameters is established, and its formulas are presented to describe the distances between grinding wheel axis and screw rotor axis. Through these formulas, the CNC wheel dressing program could be designed easily, the performance and efficiency of machine would be improved, and especially the machining quality of screw rotor would be enhanced and becomes more stability.


2020 ◽  
Vol 18 (1) ◽  
pp. 091
Author(s):  
Subham Agarwal ◽  
Shruti Sudhakar Dandge ◽  
Shankar Chakraborty

With continuous automation of the manufacturing industries and the development of advanced data acquisition systems, a huge volume of manufacturing-related data is now available which can be effectively mined to extract valuable knowledge and unfold the hidden patterns. In this paper, a data mining tool, in the form of the rough sets theory, is applied to a grinding process to investigate the effects of its various input parameters on the responses. Rotational speed of the grinding wheel, depth of cut and type of the cutting fluid are grinding parameters, and average surface roughness, amplitude of vibration and grinding ratio are the responses. The best parametric settings of the grinding parameters are also derived to control the quality characteristics of the ground components. The developed decision rules are quite easy to understand and can truly predict the response values at varying combinations of the considered grinding parameters.


Sign in / Sign up

Export Citation Format

Share Document