Prospect Analysis of the Coupling System of Low-Quality Biomass Treatment and Microalgae Biofuel Production

2011 ◽  
Vol 137 ◽  
pp. 269-274
Author(s):  
Xiao Dan Wu ◽  
Yu Huan Liu ◽  
Rong Sheng Ruan ◽  
Yi Qin Wan ◽  
Jin Sheng Zhang ◽  
...  

Nowadays human beings face the crisis and challenge of environmental pollution and energy shortage. The green treatment of low-quality biomass (such as wastewater, waste gas and solid waste), and development of microalgae biofuel are hot spots of pollution treatment and new energy development respectively. Base on the coupling system of microalgae cultivation by slurry (the product of anaerobic digestion of low-quality biomass) and biofuel production by microalgae, it is most likely to achieve an organic integration of the two hot spots, obtaining alternative liquid fuel and realizing slurry purification finally. In addition, there are added benefits can be obtained from the system, such as some high value-added products, animal feed, organic fertilizer, high-absorption materials, and so on. In this paper, combining the latest research advances of our research group, we made a brief analysis of the feasibility of microalgae cultivation by slurry, the characteristics of microalgae cultivation and lipid accumulation, the refining technologies of high calorific value fuel from microalgae, etc., and prospected the coupling system of low-quality biomass treatment and microalgae biofuel production.

2020 ◽  
Vol 93 (8) ◽  
pp. 9-12
Author(s):  
D. Ciolkosz ◽  

Ukraine produces large amounts of crop residues every year, much which could be utilized to produce biofuel. However, efficient supply chains and system configurations are needed to make such systems efficient and cost effective. One option is to integrate torrefaction, power production and biofuel production into a single, coordinated system. This approach allows for high value product (i.e. biofuel), greater utilization of the energy content of the feedstock, and supply chain efficiency. Initial analyses indicate that revenues can be enhanced through this approach, and further analyses and optimization efforts could identify a sustainable approach to renewable fuel and power production for Ukraine. The question of scale and layout remains of interest as well, and a thorough logistical study is needed to identify the most suitable configuration. Agricultural operations often benefit from smaller scales of operation, whereas fuel production processes tend to operate profitably only at very large scale. Thus, a balance must be struck between the needs of both ends of the supply chain. The processing center concept helps to balance those needs. A system such as this also has potential to synergize with other agricultural production systems, such as the production of animal feed, fertilizer, and other bio-based products. The complexities of the Ukrainian agricultural market will need to be reflected carefully in any model that seeks to assess the system's potential. Presents a concept for coupling thermal pretreatment (torrefaction with biofuel and power production for the transformation of wheat straw into a value added product for Ukraine. Torrefaction provides supply chain savings, while conversion provides added value to the product. This paradigm has potential to utilize a widely produced waste material into a valuable source of energy and possibly other products for the country.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4528
Author(s):  
Samuel O’Brien ◽  
Jacek A. Koziel ◽  
Chumki Banik ◽  
Andrzej Białowiec

The bioethanol industry continues improving sustainability, specifically focused on plant energy and GHG emission management. Dried distiller grains with solubles (DDGS) is a byproduct of ethanol fermentation and is used for animal feed. DDGS is a relatively low-value bulk product that decays, causes odor, and is challenging to manage. The aim of this research was to find an alternative, value-added-type concept for DDGS utilization. Specifically, we aimed to explore the techno-economic feasibility of torrefaction, i.e., a thermochemical treatment of DDGS requiring low energy input, less sophisticated equipment, and resulting in fuel-quality biochar. Therefore, we developed a research model that addresses both bioethanol production sustainability and profitability due to synergy with the torrefaction of DDGS and using produced biochar as marketable fuel for the plant. Our experiments showed that DDGS-based biochar (CSF—carbonized solid fuel) lower calorific value may reach up to 27 MJ∙kg−1 d.m. (dry matter) Specific research questions addressed were: What monetary profits and operational cost reductions could be expected from valorizing DDGS as a source of marketable biorenewable energy, which may be used for bioethanol production plant’s demand? What environmental and financial benefits could be expected from valorizing DDGS to biochar and its reuse for natural gas substitution? Modeling indicated that the valorized CSF could be produced and used as a source of energy for the bioethanol production plant. The use of heat generated from CSF incineration supplies the entire heat demand of the torrefaction unit and the heat demand of bioethanol production (15–30% of the mass of CSF and depending on the lower heating value (LHV) of the CSF produced). The excess of 70–85% of the CSF produced has the potential to be marketed for energetic, agricultural, and other applications. Preliminary results show the relationship between the reduction of the environmental footprint (~24% reduction in CO2 emissions) with the introduction of comprehensive on-site valorization of DDGS. The application of DDGS torrefaction and CSF recycling may be a source of the new, more valuable revenues and bring new perspectives to the bioethanol industry to be more sustainable and profitable, including during the COVID-19 pandemic and other shocks to market conditions.


Author(s):  
Muhammad Irfan Said ◽  
Muhammad Hatta ◽  
St. Rohani

Knowledge of animal feed and waste is an important component in building the livestock industry. The aspectof availability of feed and the production of livestock waste is one of the problems by cattle farmers in MattirowalieVillage, Libureng Sub-District, Bone Regency. Efforts to increase the capacity of farmers in solving these problems areneeded to increase the productivity of their livestock. This program aims to increase knowledge for farmers of beef cattlein processing agricultural and livestock waste into feed products and processing them into organic fertilizer. This activityis an implementation of the Program Pengabdian Kepada Masyarakat Unhas (PPMU) Program Kemitraan Masyarakat(PKM). This activity was carried out in Mattirowalie Village, Libureng Sub-District, Bone Regency. The partner groupsinvolved as targets were the "Kurusumange" and "Masempo Dalle" farmers group (FG). The number of trainingparticipants involved in this activity is approximately 25 peoples, overall were cattle farmers with 2-3 cattle/person. Theimplementation of technology introduction programs was carried out in the form of training programs and technologyassistance. Several technology packages that have been implemented were: 1) ammoniation technology, 2) complete feedsilage fermentation technology, 3) manufacturing of local microorganism (LM) technology and 4) Urea Molasses Block(UMB) manufacturing technology. The results of the implementation of activities to increase the capacity of partnermembers in processing agricultural waste and livestock into alternative animal feed and organic fertilizer


2014 ◽  
pp. 97-104 ◽  
Author(s):  
Electo Eduardo Silv Lora ◽  
Mateus Henrique Rocha ◽  
José Carlos Escobar Palacio ◽  
Osvaldo José Venturini ◽  
Maria Luiza Grillo Renó ◽  
...  

The aim of this paper is to discuss the major technological changes related to the implementation of large-scale cogeneration and biofuel production in the sugar and alcohol industry. The reduction of the process steam consumption, implementation of new alternatives in driving mills, the widespread practice of high steam parameters use in cogeneration facilities, the insertion of new technologies for biofuels production (hydrolysis and gasification), the energy conversion of sugarcane trash and vinasse, animal feed production, process integration and implementation of the biorefinery concept are considered. Another new paradigm consists in the wide spreading of sustainability studies of products and processes using the Life Cycle Assessment (LCA) and the implementation of sustainability indexes. Every approach to this issue has as an objective to increase the economic efficiency and the possibilities of the sugarcane as a main source of two basic raw materials: fibres and sugar. The paper briefly presents the concepts, indicators, state-of-the-art and perspectives of each of the referred issues.


Impact ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 15-17
Author(s):  
Shigeru Yao ◽  
Patchiya Phanthong

Professor Shigeru Yao and Dr Patchiya Phanthong are conducting highly collaborative research that is focused on improving mechanical technology for recycling plastics, as well as extending the shelf life of plastics, thus reducing plastic waste. The researchers are based at the Yao Laboratory, in the Department of Chemical Engineering, Fukuoka University, Japan. Phanthong is a Project Research Assistant Professor from the Research Institute for the Creation of Functional and Structural Materials working under the supervision of Yao. In addition to heading up the lab, Yao is also the lead for the NEDO (New Energy and Industrial Technology Development Organization) Advanced Research Program for Energy and Environmental Technologies. In their work, the researchers are collaborating with both industry and academia which is essential to its progression.


2017 ◽  
Vol 35 (3) ◽  
pp. 267-275 ◽  
Author(s):  
PX Sotelo-Navarro ◽  
HM Poggi-Varaldo ◽  
SJ Turpin-Marion ◽  
A Vázquez-Morillas ◽  
M Beltrán-Villavicencio ◽  
...  

This research assessed the viability to use disposable diapers as a substrate for the production of biohydrogen, a valuable clean-energy source. The important content of cellulose of disposable diapers indicates that this waste could be an attractive substrate for biofuel production. Two incubation temperatures (35 °C and 55 °C) and three diaper conditioning methods (whole diapers with faeces, urine, and plastics, WD; diapers without plastic components, with urine and faeces, DWP; diapers with urine but without faeces and plastic, MSD) were tested in batch bioreactors. The bioreactors were operated in the solid substrate anaerobic hydrogenogenic fermentation with intermittent venting mode (SSAHF-IV). The batch reactors were loaded with the substrate at ca. 25% of total solids and 10% w/w inoculum. The average cumulative bioH2 production followed the order WD > MSD > DWP. The bio-H2 production using MSD was unexpectedly higher than DWP; the presence of plastics in the first was expected to be associated to lower degradability and H2 yield. BioH2 production at 55 °C was superior to that of 35 °C, probably owing to a more rapid microbial metabolism in the thermophilic regime. The results of this work showed low yields in the production of H2 at both temperatures compared with those reported in the literature for municipal and agricultural organic waste. The studied process could improve the ability to dispose of this residue with H2 generation as the value-added product. Research is ongoing to increase the yield of biohydrogen production from waste disposable diapers.


2013 ◽  
Vol 856 ◽  
pp. 338-342 ◽  
Author(s):  
Chin Yee Sing ◽  
Mohd Shiraz Aris

Burning fossil fuel like coal in power plants released carbon dioxide that had been absorbed millions of years ago. Unfortunately, excessive carbon dioxide emission had led to global warming. Malaysia, as one of the major exporters of palm oil, has abundant oil palm mill residues that could be converted into value-added product like biomass fuel briquettes. Fuel briquette with palm kernel shell and palm mesocarp fibre as its main ingredients showed satisfactory fuel characteristics and mechanical properties as a pure biomass fuel briquette. The effects of adding some coal of higher calorific value to the satisfactory biomass fuel briquette were focused in this study. Various coal-biomass fuel blends were used, ranging from 0wt% coal to 50wt% coal. The fuel properties and mechanical properties of pure biomass briquette and briquettes with different amount of coal added were compared experimentally. From the fuel properties tests, it was found that as the coal content in the briquette was increased, the carbon content and calorific value increased. Mechanical property tests on the fuel briquettes showed a mixture of results, with some favored higher portion of coal in the briquette for better handling, transport and storage properties while some favored greater amount of biomass.


Sign in / Sign up

Export Citation Format

Share Document