scholarly journals Synergy of Thermochemical Treatment of Dried Distillers Grains with Solubles with Bioethanol Production for Increased Sustainability and Profitability

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4528
Author(s):  
Samuel O’Brien ◽  
Jacek A. Koziel ◽  
Chumki Banik ◽  
Andrzej Białowiec

The bioethanol industry continues improving sustainability, specifically focused on plant energy and GHG emission management. Dried distiller grains with solubles (DDGS) is a byproduct of ethanol fermentation and is used for animal feed. DDGS is a relatively low-value bulk product that decays, causes odor, and is challenging to manage. The aim of this research was to find an alternative, value-added-type concept for DDGS utilization. Specifically, we aimed to explore the techno-economic feasibility of torrefaction, i.e., a thermochemical treatment of DDGS requiring low energy input, less sophisticated equipment, and resulting in fuel-quality biochar. Therefore, we developed a research model that addresses both bioethanol production sustainability and profitability due to synergy with the torrefaction of DDGS and using produced biochar as marketable fuel for the plant. Our experiments showed that DDGS-based biochar (CSF—carbonized solid fuel) lower calorific value may reach up to 27 MJ∙kg−1 d.m. (dry matter) Specific research questions addressed were: What monetary profits and operational cost reductions could be expected from valorizing DDGS as a source of marketable biorenewable energy, which may be used for bioethanol production plant’s demand? What environmental and financial benefits could be expected from valorizing DDGS to biochar and its reuse for natural gas substitution? Modeling indicated that the valorized CSF could be produced and used as a source of energy for the bioethanol production plant. The use of heat generated from CSF incineration supplies the entire heat demand of the torrefaction unit and the heat demand of bioethanol production (15–30% of the mass of CSF and depending on the lower heating value (LHV) of the CSF produced). The excess of 70–85% of the CSF produced has the potential to be marketed for energetic, agricultural, and other applications. Preliminary results show the relationship between the reduction of the environmental footprint (~24% reduction in CO2 emissions) with the introduction of comprehensive on-site valorization of DDGS. The application of DDGS torrefaction and CSF recycling may be a source of the new, more valuable revenues and bring new perspectives to the bioethanol industry to be more sustainable and profitable, including during the COVID-19 pandemic and other shocks to market conditions.

2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Isaac Cann ◽  
Gabriel V. Pereira ◽  
Ahmed M. Abdel-Hamid ◽  
Heejin Kim ◽  
Daniel Wefers ◽  
...  

ABSTRACT Renewable fuels have gained importance as the world moves toward diversifying its energy portfolio. A critical step in the biomass-to-bioenergy initiative is deconstruction of plant cell wall polysaccharides to their unit sugars for subsequent fermentation to fuels. To acquire carbon and energy for their metabolic processes, diverse microorganisms have evolved genes encoding enzymes that depolymerize polysaccharides to their carbon/energy-rich building blocks. The microbial enzymes mostly target the energy present in cellulose, hemicellulose, and pectin, three major forms of energy storage in plants. In the effort to develop bioenergy as an alternative to fossil fuel, a common strategy is to harness microbial enzymes to hydrolyze cellulose to glucose for fermentation to fuels. However, the conversion of plant biomass to renewable fuels will require both cellulose and hemicellulose, the two largest components of the plant cell wall, as feedstock to improve economic feasibility. Here, we explore the enzymes and strategies evolved by two well-studied bacteria to depolymerize the hemicelluloses xylan/arabinoxylan and mannan. The sets of enzymes, in addition to their applications in biofuels and value-added chemical production, have utility in animal feed enzymes, a rapidly developing industry with potential to minimize adverse impacts of animal agriculture on the environment.


TECHNOLOGY ◽  
2015 ◽  
Vol 03 (02n03) ◽  
pp. 114-118 ◽  
Author(s):  
Leor Korzen ◽  
Yoav Peled ◽  
Shiri Zemah Shamir ◽  
Mordechai Shechter ◽  
Aharon Gedanken ◽  
...  

We performed a cost-benefit analysis for bioethanol production using biomass of Ulva rigida, a marine macroalga (seaweed), co-cultured with fish in an intensive offshore aquaculture unit. This is the first report for such analysis that takes into consideration offshore seaweed cultivation and uses a recently developed, novel and simplified ethanol production technology that is devoid of costly pre-treatments imposed to the seaweed biomass. By simultaneously producing ethanol with valuable Dried Distillers Grains with Solubles (DDGS) by-products such as animal feed, the economic viability of this system is plausible over a production range of 77–240 dry tons of seaweed per day. As such, applying the model to suggested future scenarios for the Israeli Mediterranean shorelines, which limits aquaculture to ca. 600 ha, results in unprofitability. Further, sensitivity analyses place profitability as mainly dependent on DDGS prices and on the daily growth rate (biomass yield) of the macroalga. These two are key factors to achieve profitability at the 600-ha scenario.


2011 ◽  
Vol 137 ◽  
pp. 269-274
Author(s):  
Xiao Dan Wu ◽  
Yu Huan Liu ◽  
Rong Sheng Ruan ◽  
Yi Qin Wan ◽  
Jin Sheng Zhang ◽  
...  

Nowadays human beings face the crisis and challenge of environmental pollution and energy shortage. The green treatment of low-quality biomass (such as wastewater, waste gas and solid waste), and development of microalgae biofuel are hot spots of pollution treatment and new energy development respectively. Base on the coupling system of microalgae cultivation by slurry (the product of anaerobic digestion of low-quality biomass) and biofuel production by microalgae, it is most likely to achieve an organic integration of the two hot spots, obtaining alternative liquid fuel and realizing slurry purification finally. In addition, there are added benefits can be obtained from the system, such as some high value-added products, animal feed, organic fertilizer, high-absorption materials, and so on. In this paper, combining the latest research advances of our research group, we made a brief analysis of the feasibility of microalgae cultivation by slurry, the characteristics of microalgae cultivation and lipid accumulation, the refining technologies of high calorific value fuel from microalgae, etc., and prospected the coupling system of low-quality biomass treatment and microalgae biofuel production.


2018 ◽  
Vol 44 ◽  
pp. 00062 ◽  
Author(s):  
Michał Kaczmarczyk

Geothermal energy as one of renewable energy sources is an alternative to conventional methods of heat production, and thus contributes to reducing the emission of pollutants into the environment, especially the so-called low emission. Poland is facing the problem of pollutant emissions from combustion processes, in the context to individual households using mainly solid fuels to ensure heat demand for central heating and hot water production. The paper presents the results of calculations of avoided emissions in the context of replacement of conventional individual heating for geothermal heating systems, taking into consideration not only the problem of air pollution in Poland, but also issues of fuel quality (calorific value) and efficiency of used heating devices.


2013 ◽  
Vol 67 (3) ◽  
pp. 494-505 ◽  
Author(s):  
B. Drosg ◽  
W. Fuchs ◽  
K. Meixner ◽  
R. Waltenberger ◽  
R. Kirchmayr ◽  
...  

Stillage processing can require more than one third of the thermal energy demand of a dry-grind bioethanol production plant. Therefore, for every stillage fraction occurring in stillage processing the potential of energy recovery by anaerobic digestion (AD) was estimated. In the case of whole stillage up to 128% of the thermal energy demand in the process can be provided, so even an energetically self-sufficient bioethanol production process is possible. For wet cake the recovery potential of thermal energy is 57%, for thin stillage 41%, for syrup 40% and for the evaporation condensate 2.5%. Specific issues for establishing AD of stillage fractions are evaluated in detail; these are high nitrogen concentrations, digestate treatment and trace element supply. If animal feed is co-produced at the bioethanol plant and digestate fractions are to be reused as process water, a sufficient quality is necessary. Most interesting stillage fractions as substrates for AD are whole stillage, thin stillage and the evaporation condensate. For these fractions process details are presented.


2021 ◽  
pp. 1-10
Author(s):  
C.A. Mallmann ◽  
C. Tonial Simões ◽  
J. Kobs Vidal ◽  
C. Rosa da Silva ◽  
L.M. de Lima Schlösser ◽  
...  

The presence of mycotoxins in dried distillers’ grains with solubles (DDGS), a by-product of bioethanol production from maize, has been a matter of concern due to the increasing global utilisation of this ingredient in animal feed. In this study, 186 samples of maize DDGS produced in Brazil were analysed for the presence of major mycotoxins: aflatoxins (B1, B2, G1, and G2), fumonisins (B1 and B2), zearalenone (ZEN), deoxynivalenol (DON) and ochratoxin A (OTA). Samples were provided by the local industry between January 2017 and October 2020, and mycotoxins were quantified by LC-MS/MS. More than 98% of the analysed samples were contaminated with mycotoxins, from which 59.9% had a single mycotoxin, 29.9% two mycotoxins, and 9.1% more than two mycotoxins. The most prevalent metabolites were fumonisin B1 and B2, being detected in 98.8% (mean 3,207 μg/kg) and 97.6% (mean 1,243 μg/kg) of the samples, respectively; aflatoxin B1 had the third highest positivity, with 32.3% (mean 1.47 μg/kg), followed by ZEN, with 18.01% (mean 18.2 μg/kg), DON, with 12.9% (mean 59.6 μg/kg), and OTA was not detected. Co-occurrence of total aflatoxins (AFT = aflatoxin B1+B2+G1+G2) and total fumonisins (FBT = fumonisin B1+B2) was observed in 32.07% of the samples analysed for these mycotoxins. Co-occurrence of AFT and ZEN was found in 7.84% of the samples analysed for such mycotoxins, while FBT and DON co-occurred at 13.01%. AFT, FBT, DON and ZEN co-occurred in only one sample (0.84%). Except for FBT, a considerable number of samples presented the evaluated mycotoxins below their respective limit of quantification (LOQ) with percentages of 67.61% for AFT, 81.99% for ZEN, 87.07% for DON and 100% for OTA. Since the production of bioethanol and its by-products is growing worldwide, including in Brazil, mycotoxicological monitoring of maize DDGS is crucial to identify the effects of mycotoxins occurrence in animal feed formulated with this ingredient.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Azhar Najjar ◽  
Elhagag Ahmed Hassan ◽  
Nidal Zabermawi ◽  
Saber H. Saber ◽  
Leena H. Bajrai ◽  
...  

AbstractIn this study, two highly thermotolerant and methanol-tolerant lipase-producing bacteria were isolated from cooking oil and they exhibited a high number of catalytic lipase activities recording 18.65 ± 0.68 U/mL and 13.14 ± 0.03 U/mL, respectively. Bacterial isolates were identified according to phenotypic and genotypic 16S rRNA characterization as Kocuria flava ASU5 (MT919305) and Bacillus circulans ASU11 (MT919306). Lipases produced from Kocuria flava ASU5 showed the highest methanol tolerance, recording 98.4% relative activity as well as exhibited high thermostability and alkaline stability. Under the optimum conditions obtained from 3D plots of response surface methodology design, the Kocuria flava ASU5 biocatalyst exhibited an 83.08% yield of biodiesel at optimized reaction variables of, 60 ○C, pH value 8 and 1:2 oil/alcohol molar ratios in the reaction mixture. As well as, the obtained results showed the interactions of temperature/methanol were significant effects, whereas this was not noted in the case of temperature/pH and pH/methanol interactions. The obtained amount of biodiesel from cooking oil was 83.08%, which was analyzed by a GC/Ms profile. The produced biodiesel was confirmed by Fourier-transform infrared spectroscopy (FTIR) approaches showing an absorption band at 1743 cm−1, which is recognized for its absorption in the carbonyl group (C=O) which is characteristic of ester absorption. The energy content generated from biodiesel synthesized was estimated as 12,628.5 kJ/mol. Consequently, Kocuria flava MT919305 may provide promising thermostable, methanol-tolerant lipases, which may improve the economic feasibility and biotechnology of enzyme biocatalysis in the synthesis of value-added green chemicals.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 35
Author(s):  
Elżbieta Szostak ◽  
Piotr Duda ◽  
Andrzej Duda ◽  
Natalia Górska ◽  
Arkadiusz Fenicki ◽  
...  

Although Poland is one of the leading recipients of the waste stream in the European Union (EU), it is at the same time below the average in terms of efficiency of their use/utilization. The adopted technological solutions cause waste processing rates to be relatively low in Poland. As a result, the report of the Early Warning and Response System (EWRS) of the EU indicated Poland as one of the 14 countries of the EU which are at risk in terms of possibility of achieving 50% recycling of waste. This article discusses the implemented technological solutions, and shows the profitability of the investment and the values of the process heat demand both for extractor and reactor. The experimental part analyzed the composition of the input and output of the process and compared it to the required fuel specifications. Attention was drawn to the need to improve the recycling process in order to increase the quality of manufactured fuel components. As potential ways of solving the problem of low fuel quality, cleaning the sorted reaction mass from solid particles and extending the technological line with a distillation column have been proposed. The recommended direction of improvement of the technology is also the optimization of the process of the reactor’s purification and removal of contaminants.


2000 ◽  
Vol 15 (1) ◽  
pp. 2-8 ◽  
Author(s):  
N.C. Wagner ◽  
S. Ramaswamy ◽  
U. Tschirner

AbstractA pre-economic feasibility study was undertaken to determine the potential of cereal straw for industrial utilization in Minnesota. Specifically, utilizing straw for pulp and paper manufacture was of interest. The availability of cereal straw fiber supplies at various locations across the state of Minnesota, along with pre-processing issues such as transportation, harvesting, handling, and storage, are discussed and priced. The greatest economic advantage of straw for industrial use appears to be the low cost of the raw material compared to traditional raw materials. This also provides an excellent opportunity for additional income for farmers. The methodology and information provided here should be helpful in evaluating the feasibility of utilizing straw for other industrial purposes in other parts of the world. However, in some Third World countries, long-standing on-farm, traditional uses of cereal straws for fuel, fiber, and animal feed may limit their availability for industrial utilization.


2013 ◽  
Vol 856 ◽  
pp. 338-342 ◽  
Author(s):  
Chin Yee Sing ◽  
Mohd Shiraz Aris

Burning fossil fuel like coal in power plants released carbon dioxide that had been absorbed millions of years ago. Unfortunately, excessive carbon dioxide emission had led to global warming. Malaysia, as one of the major exporters of palm oil, has abundant oil palm mill residues that could be converted into value-added product like biomass fuel briquettes. Fuel briquette with palm kernel shell and palm mesocarp fibre as its main ingredients showed satisfactory fuel characteristics and mechanical properties as a pure biomass fuel briquette. The effects of adding some coal of higher calorific value to the satisfactory biomass fuel briquette were focused in this study. Various coal-biomass fuel blends were used, ranging from 0wt% coal to 50wt% coal. The fuel properties and mechanical properties of pure biomass briquette and briquettes with different amount of coal added were compared experimentally. From the fuel properties tests, it was found that as the coal content in the briquette was increased, the carbon content and calorific value increased. Mechanical property tests on the fuel briquettes showed a mixture of results, with some favored higher portion of coal in the briquette for better handling, transport and storage properties while some favored greater amount of biomass.


Sign in / Sign up

Export Citation Format

Share Document