High Speed Dry Sliding Tribological Behaviors of Amorphous Fe-Based Alloy Coatings

2012 ◽  
Vol 184-185 ◽  
pp. 1006-1009
Author(s):  
San Ming Du ◽  
Yue Chen ◽  
Yong Zhen Zhang

In the present study, amorphous coatings on plain steel substrate were prepared by electric arc spraying technique. The high-speed dry sliding tribological properties of the coating were investigated on a pin-on-disc tribo-meter. The results show that amorphous phase generates in the sprayed coating. When the sliding speeds are less than 40m/s, the friction coefficient increases. The friction coefficients decrease with the sliding speed exceeding 60m/s. The wear rates increase with increasing the sliding. Phase transition occurs in the friction process.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3281
Author(s):  
Chiara Soffritti ◽  
Annalisa Fortini ◽  
Anna Nastruzzi ◽  
Ramona Sola ◽  
Mattia Merlin ◽  
...  

This work evaluates the dry sliding behavior of anodic aluminum oxides (AAO) formed during one traditional hard anodizing treatment (HA) and two golden hard anodizing treatments (named G and GP, respectively) on a EN AW-6060 aluminum alloy. Three different thicknesses of AAO layers were selected: 25, 50, and 100 μm. Prior to wear tests, microstructure and mechanical properties were determined by scanning electron microscopy (VPSEM/EDS), X-ray diffractometry, diffuse reflectance infrared Fourier transform (DRIFT-FTIR) spectroscopy, roughness, microhardness, and scratch tests. Wear tests were carried out by a pin-on-disc tribometer using a steel disc as the counterpart material. The friction coefficient was provided by the equipment. Anodized pins were weighed before and after tests to assess the wear rate. Worn surfaces were analyzed by VPSEM/EDS and DRITF-FTIR. Based on the results, the GP-treated surfaces with a thickness of 50 μm exhibit the lowest friction coefficients and wear rates. In any case, a tribofilm is observed on the wear tracks. During sliding, its detachment leads to delamination of the underlying anodic aluminum oxides and to abrasion of the aluminum substrate. Finally, the best tribological performance of G- and GP-treated surfaces may be related to the existence of a thin Ag-rich film at the coating/aluminum substrate interfaces.


2015 ◽  
Vol 1111 ◽  
pp. 211-216
Author(s):  
Bogdan Florin Toma ◽  
Iulian Ionita ◽  
Diana Antonia Gheorghiu ◽  
Lucian Eva ◽  
Costică Bejinariu ◽  
...  

Influence of the process parameters and geometry of the spraying nozzle on the properties of titanium deposits obtained in wire arc spraying. Wire arc spraying is a process in which through minor modifications of the spray parameters, they can have a major impact on the coatings properties. In this paper there is presented a study on the influence of process parameters and fluid dynamics of the atomization gas on the properties of titanium deposits (14T - 99.9% Ti). For this there were used three different frontal spraying nozzles, having different geometries, and were varied the spraying gas pressure and the electrical current on three levels. There were evaluated the particles velocity, coating density, chemical composition and characteristic interface between deposition and substrate. Obviously, the high speed of the atomization gas determinate the improving of all properties, but in the same time increased the oxide content in the layer. However, the oxidation can be drastically reduced if the melting and atomization of the wire droplets is produced at the point of formation of the electric arc, and the spraying jet is designed to constrain the electric arc. The assessment of deposits adherence allowed the observation of process parameters that contribute to its improvement.


2012 ◽  
Vol 507 ◽  
pp. 191-195 ◽  
Author(s):  
Pavol Hvizdoš ◽  
Viktor Puchý ◽  
Daniel Drdlík ◽  
Jaroslav Cihlář

Alumina and both tetragonal and cubic zirconia based composites with various volume fractions of constituents as well as with addition of carbon nanofibers were prepared by EPD. Mechanical properties (hardness, Youngs modulus) were measured by depth sensing indentation methods and related to chemical composition. Tribological behavior was studied using pin-on-disc technique at room temperatures in air at dry sliding. Coefficient of friction and wear rates were measured, the types of wear regimes were observed and damage micromechanisms identified.


Author(s):  
Songbo Xu ◽  
Aydar Akchurin ◽  
Tian Liu ◽  
Weston Wood ◽  
X. W. Tangpong ◽  
...  

High density polyethylene (HDPE) is widely used as a bearing material in industrial application because of its low friction and high wear resistance properties. Carbon nanofiber (CNF) reinforced HDPE nanocomposites are promising materials for biomedical applications as well, such as being the bearing materials in total joint replacements. The main objective of the present study is to investigate how the wear of HDPE can be altered by the addition of either pristine or silane treated CNFs at different loading levels (0.5 wt. % and 3 wt. %). Two types of silane coating thicknesses, 2.8 nm and 46 nm, were applied on the surfaces of oxidized CNFs to improve the interfacial bonding strength between the CNFs and the matrix. The CNF/HDPE nanocomposites were prepared through melt mixing and hot-pressing. The coefficients of friction (COFs) and wear rates of the neat HDPE and CNF/HDPE nanocomposites were determined using a pin-on-disc tribometer under dry sliding conditions. The microstructures of the worn surfaces of the nanocomposites were characterized using both scanning electron microscope (SEM) and optical microscope to analyze their wear mechanisms. Compared with the neat HDPE, the COF of the nanocomposites were reduced. The nanocomposite reinforced with CNFs coated with the thicker silane coating (46 nm) at 0.5 wt. % loading level was found to yield the highest wear resistance with a wear rate reduction of nearly 68% compared to the neat HDPE.


2015 ◽  
Vol 830-831 ◽  
pp. 333-336 ◽  
Author(s):  
M. Ananda Jothi ◽  
S. Ramanathan

Titanium and its alloys exhibit a unique combination of physical and corrosion resistance properties which make them ideal materials for space flight engine component such as disks and blades of compressor, marine applications, chemical industries and many bio medical applications. However the use of these materials is limited due to its poor tribological properties. Dry sliding wear tests were performed on Ti-6Al-4V using a pin-on-disc (EN31 steel) configuration. Wear rates were measured with different load and sliding velocity at a constant sliding distance. Microstructures of worn surfaces were characterized by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).


2017 ◽  
Vol 735 ◽  
pp. 54-58
Author(s):  
D. Shanmugasundaram ◽  
K. Gunasekaran ◽  
R. Chandramouli ◽  
N. Natarajan

The present research paper covers statistical analysis of the major tribological factors affecting the dry sliding wear behavior of Tungsten Carbide (WC) and Chromium Carbide (Cr-C) coatings on plain carbon P/M steel substrate using High Velocity Oxy Flame (HVOF) Coating Technique. Experiments were conducted on pin-on-disc wear testing equipment. The various parameters related to wear such as wear rate, Coefficientof Friction of the coated Disc, Hardness and Surface Roughness were measured.In comparison, WC and Cr-C coating, WC coating has comparably good effect.


2011 ◽  
Vol 462-463 ◽  
pp. 1224-1229 ◽  
Author(s):  
I. Agung ◽  
Junaidi Syarif ◽  
Mariyam Jameelah Ghazali ◽  
Z. Sajuri

Effect of peak-aged and over-aged Cu particles on wear behaviour of ferritic iron was investigated by means of Pin-on-Disc wear test under dry sliding condition. It was found that hardness of the peak-aged sample was higher than the over-aged sample. The specific wear rates of peak-aged samples were in the range of 0.20 × 10-4 to 0.89 × 10-4 mm3/(Nm) while the over-aged samples were in the range of 0.21 × 10-4 to 1.29 × 10-4 mm3/(Nm). Although both samples possessed moderate wear behaviours, the peak-aged samples had better wear resistance. Scanning Electron Microscopy observation found that most wear mechanism were due to plastic ploughing phenomenon. Transferred materials from the counterface tool was also proven by Energy Dispersive Spectroscopy test. However, the roughness test showed that the peak-aged sample surface was finer than the over-aged sample surface. Average roughness of peak-aged samples were in the range of 0.49 to 1.79 μm while the over-aged samples were in the range of 3.28 to 4.02 μm. Hence, it can be concluded that the peak-aged Cu particles can improve the wear resistance of steel.


1994 ◽  
Vol 354 ◽  
Author(s):  
D.M. Ruck ◽  
J.-P. Hirvonen ◽  
S. Yan ◽  
R. Lappalainen ◽  
P. Torrfi

AbstractHigh speed steel with a martensitic microstructure is widely used in tool industry, but often the usage is limited by severe abrasive and corrosive wear. Metal ion implantation is a promising method to improve the tribological behaviour of this steel, as was shown in several publications. In this paper we discuss the application V and Cr implanted high speed steel, both of these elements are alloying constituents of the steel matrix. Combined with implantation of carbon is also carried out.The tribological tests were performed with a pin-on-disc machine under dry sliding conditions. The obtained tribological results are discussed in relation to the microstructures of the nonimplanted and implanted samples.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 290
Author(s):  
Hongjian Guo ◽  
Bo Li ◽  
Pengxun Yan ◽  
Zhiguo Wu

In the present work, we investigated the microstructures and properties of as-sprayed and annealed CoMoCrSi coatings. Specifically, the annealed treatment at 800 °C resulted in good recrystallization, improved microstructure, and enhanced properties of CoMoCrSi coatings. An oxide layer formed on the annealed coating surfaces; it was mainly composed of nano-sized Cr2O3 and micro-sized CoMoO4, and could account for the increased surface microhardness and enhanced anti-wear performance of annealed coatings. In particular, the very hard Cr2O3 played a critical role of resisting press-in and wear during the tests, and the CoMoO4 had a lubricating effect during the friction process. Finally, the annealed coatings exhibited low coefficients of friction (COFs) of 0.4 and wear rates of 0.7–0.8 × 10−6 mm3·N−1·m−1 after a long sliding distance of 1000 m at RT. Consequently, the wear mechanism transferred from brittle fracture coupled with abrasive wear for the as-sprayed coating to slight abrasive wear for annealed coatings.


Sign in / Sign up

Export Citation Format

Share Document