Interfacial Microstructure of Diffusion-Bonded and Annealed Cu-10Fe/Al6061 Clad Material

2012 ◽  
Vol 248 ◽  
pp. 60-65
Author(s):  
Ju Young Jin ◽  
Sun Ig Hong

Diffusion bonding between the Cu-10%Fe and Al6061 alloys were successfully achieved at various temperatures (450-525°C) in the argon atmosphere. The bonding interface regions were analyzed using scanning electron microscopy and energy dispersive spectrometry and XRD. The presence of Fe particles in Cu was found to have an influence on the kinetics of intermetallic compound layer formation. Cu-Fe/Al 6061 exhibited the slower growth rate of intermetallic layers than Cu/Al 6061 after diffusion bonding. The movement of Cu-Fe/Cu9Al4 interface into Cu-Fe substrate appears to be hindered by the presence of populated Fe-containing particles and filaments. In addition to Cu9Al4, CuAl and CuAl2 intermetallic layers, Al7Cu2Fe and unreacted Fe were observed to be present in the intermetallic layers. The intermetallic layers which are close to Cu such as Cu9Al4 and CuAl were observed to be harder in Cu-10%Fe/Al 6061 than in Cu/Al 6061, suggesting Fe and its intermetallics have some strengthening effect on Cu9Al4 and CuAl.

2006 ◽  
Vol 15-17 ◽  
pp. 381-386 ◽  
Author(s):  
I.H. Hwang ◽  
Takehiko Watanabe ◽  
Y. Doi

We tried to join steel to Al-Mg alloy using a resistance spot welding method. The effect of Mg in Al-Mg alloy on the strength and the interfacial microstructure of the joint was investigated. Additionally, the effect of insert metal of commercially pure aluminum, which was put into the bonding interface, on the joint strength was examined. The obtained results were as follows. The cross-tensile strength of a joint between SS400 steel and commercially pure aluminum (SS400/Al) was high and fracture occurred in the aluminum base metal. However, the strength of a joint between SS400 and Al-Mg alloy was remarkably low and less than 30% of that of the SS400/Al joint. An intermetallic compound layer developed so thickly at the bonded interface of the SS400/Al-Mg alloy joint that the joint strength decreased. The intermetallic compound layer developed more thickly as Mg content in the Al-Mg alloy increased. Using insert metal of commercially pure aluminum containing little Mg successfully improved the strength of the SS400/Al-Mg alloy joint and the strength was equivalent to that of the base metal.


2020 ◽  
Vol 307 ◽  
pp. 26-30
Author(s):  
Azman Jalar ◽  
Maria Abu Bakar ◽  
Mohd. Zulhakimi Ab. Razak ◽  
Norliza Ismail

Evaluating the growth kinetics is one of the most important characteristic in assessing the quality and reliability of metallurgical joining, especially in electronics packaging such as soldering and wire bonding technology. The growth kinetics is normally assessed using Arrhenius equation that involves diffusion activities due to thermally activated process. The well-known factors of thermal and time together with generally accepted growth exponent have been widely used for this assessment. The intermetallic compound layer which is the by-product of metallurgical reaction during soldering process has been exposed to high temperature to accelerate its growth. The cross-section of the joining was observed using optical microscope to quantify the layer of intermetallic compound. Morphological effect and shape factor of the layer have been analysed in complement with the effect of temperature and time on the growth behaviour. Directional growth and irregularities shape of the intermetallic layer show some inconsistency on the selection of growth exponent. The effect of initial size of intermetallic layer must also be considered in this assessment. This study suggests that the morphological effect must be analysed prior to the selection the growth exponent in assessing growth behaviour and kinetics of intermetallic layer in metallurgical joining.


2013 ◽  
Vol 683 ◽  
pp. 128-132
Author(s):  
In Ho Lee ◽  
Kap Ho Lee ◽  
Sun Ig Hong

Cu and Al6061 alloys were diffusion-bonded at 530°C with Cu-15 wt. % Ag alloy as an intermediate layer and the interface microstructure were analyzed. The presence of Cu9Al4, CuAl and CuAl2intermetallic layers were confirmed along with Ag3Mg and AgMg intermetallics. Ag was found to diffuse into Al, forming needle-shaped Ag2Al precipitates in Al substrate close to Al/Cu-Ag interface region. Micro-Vickers indentation aimed at the interface regions, CuAl/CuAl2and CuAl2/Ag3Mg-AgMg lamella revealed that cracks were formed mostly around the indenter mark in CuAl2layer more than in CuAl and no cracks in the Ag3Mg-AgMg lamella region, suggesting CuAl2is more brittle than CuAl and Ag3Mg-AgMg lamella is rather ductile. Ag3Mg-AgMg lamella was found to be formed at the interface between Al and CuAl2. The formation of ductile Ag3Mg-AgMg lamella at the Al interface suggests that the diffusion bonding Cu and Al with Cu-Ag or Ag as a intermediate layer may increases the interface reliability of Cu/Al hybrid alloy.


2007 ◽  
Vol 539-543 ◽  
pp. 3865-3871 ◽  
Author(s):  
Naotsugu Yamamoto ◽  
Makoto Takahashi ◽  
Masatoshi Aritoshi ◽  
Kenji Ikeuchi

The microstructure of the friction-bonded interface of Al alloys to low C steel has been investigated by TEM observations to reveal the controlling factor of the formation and growth of the IMC (Intermetallic Compound) layer, which caused the premature fracture at the interface even when its thickness was less than 1 μm, as reported in a previous paper. The thickness of the IMC layer observed at the interfaces of Al-Mg alloy/steel and pure-aluminum/steel joints increased almost in proportion to the friction time, but did not obey the parabolic law a characteristic kinetics of the diffusion-controlled process. Analyses of SAD patterns from the IMC layer indicate that it consisted of Fe2Al5, Fe4Al13, (Fe, Mn)Al6 and FeAl2, depending on the alloying elements. These IMCs were granular and distributed almost randomly within the IMC layer, suggesting that mechanical mixing of the steel with the Al alloy occurred at the interface. In the low C steel adjacent to the IMC layer, a zone of much finer grains than those of the base metal was observed. Its width increased with friction time and pressure, and with the growth of the IMC layer, as well. These results suggest that the superficial region of the steel underwent a heavy plastic deformation during the friction process and it had a close relation with the growth of the IMC layer.


2005 ◽  
Vol 486-487 ◽  
pp. 273-276
Author(s):  
Dae Gon Kim ◽  
Hyung Sun Jang ◽  
Young Jig Kim ◽  
Seung Boo Jung

In the present work, the growth kinetics of intermetallic compound layer formed in Sn-3.5Ag flip chip solder joints by solid-state isothermal aging was examined at temperatures between 80 and 150 °C for 0 to 60 days. The bumping for the flip chip devices was performed using an electroless under bump metallization. The quantitative analyses were performed on the intermetallic compound layer thickness as a function of aging time and aging temperature. The layer growth of the Ni3Sn4 intermetallic compound followed a parabolic law within a given temperature range. As a whole, because the value of the time exponent (n) is approximately equal to 0.5, the layer growth of the intermetallic compound was mainly controlled by diffusion mechanism in the temperature range studied. The apparent activation energy of the Ni3Sn4 intermetallic was 49.63 kJ/mol.


2003 ◽  
Vol 18 (11) ◽  
pp. 2562-2570 ◽  
Author(s):  
K.Y. Lee ◽  
M. Li ◽  
K.N. Tu

The evolution of an interfacial microstructure between Cu/Ni/Au bond-pad metallization and Pb-free or Pb-containing solder bumps during solid-state aging was investigated. A distinctive difference between the Pb-containing and Pb-free solder bumps was observed. A continuous (Au,Ni)Sn4 intermetallic compound layer was readily detected in the Pb-containing solder bump on the bond-pad. No such layer exists in the Pb-free case; instead a large number of (Au,Ni)Sn4 particles scatter in the bulk of the solder. The different morphologies of the (Au,Ni)Sn4 have been explained on the basis of the contact angle in Young's equation and of the growth of a flat layer by ripening. A simple kinetic analysis of ripening between a set of monosize spheres and a flat surface is given to describe the layered growth having a time dependence around 0.5.


2012 ◽  
Vol 504-506 ◽  
pp. 405-410 ◽  
Author(s):  
Takashi Iizuka ◽  
Ryo Itani

Welding properties and formabilies of a tailored blank which consists of dissimilar metals are interesting because of the possible benefits for lightening of materials. Especially, the combination of mild steel and aluminum or aluminum alloy is expected as a representative of such a light hybrid material. Until now, some successful examples about welding of steel and aluminum using friction stir welding and laser roll welding have been reported. Recently, our research team has developed a butt laser welding method using CO2 laser. It was already confirmed that, by using this method, it was possible to obtain SPCC/A1100 O-tailored blanks with almost equal joint strength to the tensile strength of base aluminum. However, it has not been reported what was made in welded interfaces of the hybrid sheets. In this study, the welded interface of SPCC/A1100-O tailored blank obtained by butt laser welding was observed and analyzed using FE-SEM and EDS. Furthermore, fractured site in some formability tests were also observed, and it was identified where fracture occurred. In the experiments, the welded interface of steel/aluminum tailored blank, which has joint strength of 80MPa-90MPa, was observed. In the observation of low magnification, no clear intermetallic compound layers were seen. In the observation of higher magnification, it was confirmed that some intermetallic layers existed. From results of EDS analysis, it was indicated that this intermetallic compound layer consisted of FeAl3, Fe2Al5, FeAl, Fe2Al and Fe3Al. Thin Fe2Al5 layers of about 3 micro meters mainly existed between steel side and aluminum side. From this layer, some dendritic FeAl3 layers appeared into the aluminum side. In the steel side, relatively wide FeAl layers and Fe3Al layers were seen in turn. According to references, because welded sheet of steel and aluminum with good mechanical properties has intermetallic layers less than 4 micro meters, it was confirmed that butt laser welding method developed by our team had possibility to provide good steel/aluminum tailored blanks. In the fractured site by Erichsen test, Fe2Al5 layered were left in both steel side and aluminum side. Thus, it was indicated that a crack spread along the Fe2Al5 layer. From results of these experiments, it was confirmed that butt laser welding method developed by our team provided steel/aluminum tailored blanks with thin Fe2Al5 layers of about 3micro meters. And, it was indicated that this Fe2Al5 layer brought about early fracture.


Sign in / Sign up

Export Citation Format

Share Document