Hardware Design for State Vector Identification of a Small Helicopter Model

2013 ◽  
Vol 282 ◽  
pp. 107-115 ◽  
Author(s):  
Viliam Fedák ◽  
Ján Bačík

The paper deals with hardware design for sensory system of a small helicopter model that is characterized by a long-term stability and in real time generates data about helicopter state variables during helicopter flight. The sensor system is based on powerful 32-bit processors with the cores ARM7 and Cortex-M3. The main unit for data processing presents an embedded computer built on a mini-ITX motherboard with processor Intel i3. As the helicopter presents a system with six degrees of freedom and in the fact, during the flight, there is not any fixed point that would enable to caliber the sensors placed on the helicopter board, for processing of sensor data complex stochastic calculations are necessary. They are based on the discrete Kalman filter that present a main computing tool of the control system.

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6801
Author(s):  
Krzysztof Fuławka ◽  
Witold Pytel ◽  
Bogumiła Pałac-Walko

The impact of seismicity on structures is one of the key problems of civil engineering. According to recent knowledge, the reliable analysis should be based on both rotational and translational components of the seismic wave. To determine the six degrees of freedom (6-DoF) characteristic of mining-induced seismicity, two sets of seismic posts were installed in the Lower Silesian Copper Basin, Poland. Long-term continuous 6-DoF measurements were conducted with the use of the R-1 rotational seismometer and EP-300 translational seismometer. In result data collection, the waveforms generated by 39 high-energy seismic events were recorded. The characteristic of the rotational component of the seismic waves were described in terms of their amplitude and frequency characteristics and were compared with translational measurements. The analysis indicated that the characteristic of the rotational component of the seismic wave differs significantly in comparison to translational ones, both in terms of their amplitude and frequency distribution. Also, attenuation of rotational and translational components was qualitatively compared. Finally, the empirical formulas for seismic rotation prediction in the Lower Silesian Copper Basin were developed and validated.


2006 ◽  
Vol 5-6 ◽  
pp. 529-540 ◽  
Author(s):  
Heinz Ulbrich ◽  
T. Buschmann ◽  
S. Lohmeier

This paper presents the performance enhanced humanoid robot LOLA which is currently being manufactured. Hardware design, controllers and simulation are based on ex- perience gained during the development of the robot JOHNNIE. The objective of the current research project is to realize a fast, human-like and autonomous walking motion. To enable an optimal design of the robot with respect to lightweight construction, motor and drive sizing, an appropriate simulation model is required. Dynamics simulation is a key tool to develop the hardware and control design properly. For hardware design and detailed dynamic analysis a comprehensive model including motor and gear dynamics is required, while for controller de- sign and stability analysis a simplified model for global system dynamics is sufficient. Both robots are characterized by a lightweight construction. In comparison to JOHNNIE, the new robot LOLA has a modular, multi-sensory joint design with brushless motors. Moreover, the previously purely central electronics architecture is replaced by a network of decentral joint controllers, sensor data acquisition and filtering units and a central PC. The fusion of motor, gear and sensors into a highly integrated mechatronic joint module has several advantages for the whole system, including high power density, good dynamic performance and reliability. Ad- ditional degrees of freedom are introduced in elbow, waist and toes. Linear actuators are used for the knee joints to achieve a better mass distribution in the legs.


Author(s):  
Jakob Hærvig ◽  
Anna Lyhne Jensen ◽  
Marie Cecilie Pedersen ◽  
Henrik Sørensen

The free fall trajectories of flat plates are investigated in order to improve understanding of the forces acting on falling blunt objects. The long term goal is to develop a general applicable model to predict free fall trajectories. Numerically the free fall of a flat plate is investigated using a six degrees of freedom (6DOF) solver and a dynamic mesh. To validate the simulation, the trajectories of aluminium plates falling in water are recorded by digital camera recordings and compared to the simulation. The simulation is able to calculate the motion of the plate within each time step with high accuracy, and thereby allowing the whole trajectory to be predicted with fair accuracy. With the numerical model able to predict the free fall and the complex plate fluid interactions, fluids forces can be extracted for model development in future studies.


Author(s):  
Renato Rodriguez Nunez ◽  
Damoon Soudbakhsh

Abstract This paper presents a model and optimal controller for Unmanned Underwater Vehicles (UUVs). We present a nonlinear six degrees of freedom model of the UUV that includes hydrodynamic and hydrostatic terms. To design the controller, we simplify the model using the geometry of the UUV as well as its operating conditions such as the depth and expected travel speed. Instead of designing a controller for the state space system, we used feedback linearization technique to decouple the motions. Then, a set of controllers were designed for each motion. To incorporate the constraints on the input and the state variables, we designed a fast Model Predictive Controller (MPC) for the UUV and compared its performance with a conventional controller.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammad Karbalaei Akbari ◽  
Jie Hu ◽  
Francis Verpoort ◽  
Hongliang Lu ◽  
Serge Zhuiykov

AbstractRetina nociceptor, as a key sensory receptor, not only enables the transport of warning signals to the human central nervous system upon its exposure to noxious stimuli, but also triggers the motor response that minimizes potential sensitization. In this study, the capability of two-dimensional all-oxide-heterostructured artificial nociceptor as a single device with tunable properties was confirmed. Newly designed nociceptors utilize ultra-thin sub-stoichiometric TiO2–Ga2O3 heterostructures, where the thermally annealed Ga2O3 films play the role of charge transfer controlling component. It is discovered that the phase transformation in Ga2O3 is accompanied by substantial jump in conductivity, induced by thermally assisted internal redox reaction of Ga2O3 nanostructure during annealing. It is also experimentally confirmed that the charge transfer in all-oxide heterostructures can be tuned and controlled by the heterointerfaces manipulation. Results demonstrate that the engineering of heterointerfaces of two-dimensional (2D) films enables the fabrication of either high-sensitive TiO2–Ga2O3 (Ar) or high-threshold TiO2–Ga2O3 (N2) nociceptors. The hypersensitive nociceptor mimics the functionalities of corneal nociceptors of human eye, whereas the delayed reaction of nociceptor is similar to high-threshold nociceptive characteristics of human sensory system. The long-term stability of 2D nociceptors demonstrates the capability of heterointerfaces engineering for effective control of charge transfer at 2D heterostructured devices.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4004 ◽  
Author(s):  
Shan ◽  
Zhao ◽  
Pan ◽  
Wang ◽  
Zhao

In the maritime scene, visible light sensors installed on ships have difficulty accurately detecting the sea–sky line (SSL) and its nearby ships due to complex environments and six-degrees-of-freedom movement. Aimed at this problem, this paper combines the camera and inertial sensor data, and proposes a novel maritime target detection algorithm based on camera motion attitude. The algorithm mainly includes three steps, namely, SSL estimation, SSL detection, and target saliency detection. Firstly, we constructed the camera motion attitude model by analyzing the camera's six-degrees-of-freedom motion at sea, estimated the candidate region (CR) of the SSL, then applied the improved edge detection algorithm and the straight-line fitting algorithm to extract the optimal SSL in the CR. Finally, in the region of ship detection (ROSD), an improved visual saliency detection algorithm was applied to extract the target ships. In the experiment, we constructed SSL and its nearby ship detection dataset that matches the camera’s motion attitude data by real ship shooting, and verified the effectiveness of each model in the algorithm through comparative experiments. Experimental results show that compared with the other maritime target detection algorithm, the proposed algorithm achieves a higher detection accuracy in the detection of the SSL and its nearby ships, and provides reliable technical support for the visual development of unmanned ships.


2005 ◽  
Vol 26 (2) ◽  
pp. 100-106 ◽  
Author(s):  
James D.A. Parker ◽  
Donald H. Saklofske ◽  
Laura M. Wood ◽  
Jennifer M. Eastabrook ◽  
Robyn N. Taylor

Abstract. The concept of emotional intelligence (EI) has attracted growing interest from researchers working in various fields. The present study examined the long-term stability (32 months) of EI-related abilities over the course of a major life transition (the transition from high school to university). During the first week of full-time study, a large group of undergraduates completed the EQ-i:Short; 32 months later a random subset of these students (N = 238), who had started their postsecondary education within 24 months of graduating from high school, completed the measures for a second time. The study found EI scores to be relatively stable over the 32-month time period. EI scores were also found to be significantly higher at Time 2; the overall pattern of change in EI-levels was more than can be attributed to the increased age of the participants.


1991 ◽  
Vol 65 (03) ◽  
pp. 263-267 ◽  
Author(s):  
A M H P van den Besselaar ◽  
R M Bertina

SummaryIn a collaborative trial of eleven laboratories which was performed mainly within the framework of the European Community Bureau of Reference (BCR), a second reference material for thromboplastin, rabbit, plain, was calibrated against its predecessor RBT/79. This second reference material (coded CRM 149R) has a mean International Sensitivity Index (ISI) of 1.343 with a standard error of the mean of 0.035. The standard error of the ISI was determined by combination of the standard errors of the ISI of RBT/79 and the slope of the calibration line in this trial.The BCR reference material for thromboplastin, human, plain (coded BCT/099) was also included in this trial for assessment of the long-term stability of the relationship with RBT/79. The results indicated that this relationship has not changed over a period of 8 years. The interlaboratory variation of the slope of the relationship between CRM 149R and RBT/79 was significantly lower than the variation of the slope of the relationship between BCT/099 and RBT/79. In addition to the manual technique, a semi-automatic coagulometer according to Schnitger & Gross was used to determine prothrombin times with CRM 149R. The mean ISI of CRM 149R was not affected by replacement of the manual technique by this particular coagulometer.Two lyophilized plasmas were included in this trial. The mean slope of relationship between RBT/79 and CRM 149R based on the two lyophilized plasmas was the same as the corresponding slope based on fresh plasmas. Tlowever, the mean slope of relationship between RBT/79 and BCT/099 based on the two lyophilized plasmas was 4.9% higher than the mean slope based on fresh plasmas. Thus, the use of these lyophilized plasmas induced a small but significant bias in the slope of relationship between these thromboplastins of different species.


Sign in / Sign up

Export Citation Format

Share Document