Deformation Monitoring and Evaluating Technology for Subgrade of Unballasted Track on Lan-Xin Passenger Dedicated Line

2013 ◽  
Vol 351-352 ◽  
pp. 1152-1158
Author(s):  
Qian Su ◽  
Wen Chao Zhang ◽  
Li Song Zhang ◽  
Jian Zhang

Lanzhou-Xinjiang passenger dedicated line is the first high speed railway on chinas northwestern Gobi where the temperature range is large and the wind is huge. Most road section of Lan-Xin passenger dedicated line is subgrade. This paper researches the ballastless track subgrade settlement observation scheme and assessment method on area where climatic conditions is harsh and geologic conditions is complex. The result shows that: the observation accuracy of subgrade settlement tests satisfies the requirement by using Layered settlement instrument, intelligent static force level and high-accuracy Hydraulic settlement instrument; Subgrade lies upon bedrock or Gobi soil with great bearing capacity in gale area, and distance between observation sections could be increased seemly. The space between observation sections generally should be less than 100m in areas where bedrock exposed, thick gravel soil distribute commonly; the distance between observation sections should be less than 50m in pre-mountain Alluvial-pluvial plain areas; hyperbolic method adapt the estimate of subgrade settlement on Gobi area, and the correlation coefficient is 0.97; Subgrade settlement deformation curve converges quickly and the settlement value after 40 days reaches 85% of ultimate settlement.

2021 ◽  
Vol 11 (11) ◽  
pp. 4756
Author(s):  
Gaoran Guo ◽  
Xuhao Cui ◽  
Bowen Du

High-speed railways (HSRs) are established all over the world owing to their advantages of high speed, ride comfort, and low vibration and noise. A ballastless track slab is a crucial part of the HSR, and its working condition directly affects the safe operation of the train. With increasing train operation time, track slabs suffer from various defects such as track slab warping and arching as well as interlayer disengagement defect. These defects will eventually lead to the deformation of track slabs and thus jeopardize safe train operation. Therefore, it is important to monitor the condition of ballastless track slabs and identify their defects. This paper proposes a method for monitoring track slab deformation using fiber optic sensing technology and an intelligent method for identifying track slab deformation using the random-forest model. The results show that track-side monitoring can effectively capture the vibration signals caused by train vibration, track slab deformation, noise, and environmental vibration. The proposed intelligent algorithm can identify track slab deformation effectively, and the recognition rate can reach 96.09%. This paper provides new methods for track slab deformation monitoring and intelligent identification.


2021 ◽  
Vol 11 (17) ◽  
pp. 7830
Author(s):  
Junzhao Zhou ◽  
Yanyun Luo ◽  
Guosheng Lv ◽  
Yongliang Xiong

In view of the vertical deformation of CRTS III slab ballastless track of high-speed railways under the action of ambient temperature, a simulation model of the temperature field and vertical deformation of CRTS III slab ballastless track was developed and verified by a field test. The main conclusions are as follows: When the temperature gradient is positive, the central part of the slab track deforms upward. The edge of the slab track deforms downward. The displacement in the central part of the slab track is the largest, and the elliptical region is formed in the middle. The more outward the displacement is, the smaller the displacement is. When the temperature gradient is negative, the downward displacement in the middle of the slab track is the largest, an elliptical region is formed in the middle, and the outward displacement gradually changes from downward to upward. The model developed in this study can accurately reflect the temperature field inside the slab track and the vertical displacement of the slab track at the macro level. In practical application, the technical data can be provided for the maintenance of CRTS III slab tracks according to the simulation results. The temperature field distribution and possible deformation of the slab track can be obtained by adding simulated working conditions according to the climatic conditions. These predictions can be used to focus on targeted maintenance and repair to reduce the investment of human, material, and financial resources, and to achieve the purpose of “green maintenance”.


2018 ◽  
Vol 77 (6) ◽  
pp. 337-346 ◽  
Author(s):  
A. B. Kosarev ◽  
A. V. Barch ◽  
E. N. Rozenberg

Abstract. High-speed railways are fast-growing and promising type of traffic. In Russia development of high-speed railway service is associated with the solution of a number of problems, including infrastructure. Authors propose to use earth connection of the railway catenary with the help of an artificial earthing switch on currently designed high-speed line Moscow—Kazan for 2×25 kV power supply system. Taking into account requirements for electrical safety conditions for maintenance of the track and earthed catenary supports, paper justifies method for calculating allowable voltages of rail—earth points and supports of catenary. Methods takes into account structural features of ballastless track superstructure used for high-speed lines. It is estimated that the voltages admissible under the electrical safety conditions are random in nature and distributed logarithmically normal. When calculating probability of safe operation, one should take into account random nature of both permissible stresses and those actually occurring on the track. It is estimated that the probability of safe operation in traction networks of sections with ballastless track superstructure does not exceed a similar value in electrified sections with the conventional structure of a ballast prism. Feasibility of using a 2×25 kV earth system using an artificial earth connection is confirmed, recommendations on its use are given. Authors substantiate allowable values of the rail—earth voltage and catenary supports, which practically exclude the occurrence of hazardous situations for personnel maintaining the track in sections with ballastless track superstructure.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2876
Author(s):  
Yingying Zhang ◽  
Lingyu Zhou ◽  
Akim D. Mahunon ◽  
Guangchao Zhang ◽  
Xiusheng Peng ◽  
...  

The mechanical performance of China Railway Track System type II (CRTS II) ballastless track suitable for High-Speed Railway (HSR) bridges is investigated in this project by testing a one-quarter-scaled three-span specimen under thermal loading. Stress analysis was performed both experimentally and numerically, via finite-element modeling in the latter case. The results showed that strains in the track slab, in the cement-emulsified asphalt (CA) mortar and in the track bed, increased nonlinearly with the temperature increase. In the longitudinal direction, the zero-displacement section between the track slab and the track bed was close to the 1/8L section of the beam, while the zero-displacement section between the track slab and the box girder bridge was close to the 3/8L section. The maximum values of the relative vertical displacement between the track bed and the bridge structure occurred in the section at three-quarters of the span. Numerical analysis showed that the lower the temperature, the larger the tensile stresses occurring in the different layers of the track structure, whereas the higher the temperature, the higher the relative displacement between the track system and the box girder bridge. Consequently, quantifying the stresses in the various components of the track structure resulting from sudden temperature drops and evaluating the relative displacements between the rails and the track bed resulting from high-temperature are helpful in the design of ballastless track structures for high-speed railway lines.


2021 ◽  
Vol 10 (3) ◽  
pp. 119
Author(s):  
Hakan A. Nefeslioglu ◽  
Beste Tavus ◽  
Melahat Er ◽  
Gamze Ertugrul ◽  
Aybuke Ozdemir ◽  
...  

Suitable route determination for linear engineering structures is a fundamental problem in engineering geology. Rapid evaluation of alternative routes is essential, and novel approaches are indispensable. This study aims to integrate various InSAR (Interferometric Synthetic Aperture Radar) techniques for sinkhole susceptibility mapping in the Kirikkale-Delice Region of Turkey, in which sinkhole formations have been observed in evaporitic units and a high-speed train railway route has been planned. Nine months (2019–2020) of ground deformations were determined using data from the European Space Agency’s (ESA) Sentinel-1A/1B satellites. A sinkhole inventory was prepared manually using satellite optical imagery and employed in an ANN (Artificial Neural Network) model with topographic conditioning factors derived from InSAR digital elevation models (DEMs) and morphological lineaments. The results indicate that high deformation areas on the vertical displacement map and sinkhole-prone areas on the sinkhole susceptibility map (SSM) almost coincide. InSAR techniques are useful for long-term deformation monitoring and can be successfully associated in sinkhole susceptibility mapping using an ANN. Continuous monitoring is recommended for existing sinkholes and highly susceptible areas, and SSMs should be updated with new results. Up-to-date SSMs are crucial for the route selection, planning, and construction of important transportation elements, as well as settlement site selection, in such regions.


Kybernetes ◽  
2020 ◽  
Vol 49 (11) ◽  
pp. 2713-2735 ◽  
Author(s):  
Xiaomin Fan ◽  
Yingzhi Xu ◽  
Yongqing Nan ◽  
Baoli Li ◽  
Haiya Cai

Purpose The purpose of this paper is to analyse the impact of high-speed railway (HSR) on industrial pollution emissions using the data for 285 prefecture-level cities in China from 2004 to 2016. Design/methodology/approach The research method used in this paper is the multi-period difference-in-differences (DID) model, which is an effective policy effect assessment method. To further address the issue of endogeneity, the DID integrated with the propensity score matching (PSM-DID) approach is employed to eliminate the potential self-selection bias. Findings The results show that the HSR has significantly reduced industrial pollution emissions, which is validated by several robustness tests. Compared with peripheral cities, HSR exerts a greater impact on industrial pollution emissions in central cities. In addition, the mechanism test reveals that the optimised allocation of inter-city industries is an important channel for HSR to mitigate industrial pollution emissions, and this is closely related to the location of HSR stations. Originality/value Previous studies have paid more attention to evaluating the economic effects of HSR, however, most of these studies overlook its environmental effects. Consequently, the impact of HSR on industrial pollution emissions is led by using multi-period DID models in this paper, in which the environmental effects are measured. The results of this paper can provide a reference for the pollution reduction policies and also the coordinated development of economic growth and environmental quality.


2011 ◽  
Vol 97-98 ◽  
pp. 3-9
Author(s):  
Yang Wang ◽  
Quan Mei Gong ◽  
Mei Fang Li

The slab track is a new sort of track structure, which has been widely used in high-speed rail and special line for passenger. However, the ballastless track structure design theory is still not perfect and can not meet the requirements of current high-speed rail and passenger line ballastless track. In this paper, composite beam method is used to calculate the deflection of the track plate and in this way the vertical supporting stress distribution of the track plate can be gotten which set a basis for the follow-up study of the dynamic stress distribution in the subgrade. Slab track plate’s bearing stress under moving load is analyzed through Matlab program. By calculation and analysis, it is found that the deflection of track plate and the rail in the double-point-supported finite beam model refers to the rate of spring coefficient of the fastener and the mortar.The supporting stress of the rail plate is inversely proportional to the supporting stress of the rail. The two boundary conditions of that model ,namely, setting the end of the model in the seams of the track plate or not , have little effect on the results. We can use the supporting stress of the track plates on state 1to get the distribution of the supporting stress in the track plate when bogies pass. Also, when the dynamic load magnification factor is 1.2, the track plate supporting stress of CRST I & CRST II-plate non-ballasted structure is around 40kPa.


2021 ◽  
Vol 27 (4) ◽  
pp. 04021030
Author(s):  
Xiaohui Wang ◽  
Jianwei Yang ◽  
Jinhai Wang ◽  
Yanxue Wang ◽  
Fu Liu

2021 ◽  
pp. 57-61
Author(s):  

A method for the development an effective technology for casting of billets of insert cutters with specified properties from high-speed steels for milling cutters of rotors of mining combines is proposed, including the identification of a set of goals, the choice of priority technology and the determination of the specified characteristics of the technology. An alternative method of expert assessment is proposed, which ensures high reliability of the results. Keywords: innovative technology, casting, design, expert assessment method. [email protected], [email protected]


Sign in / Sign up

Export Citation Format

Share Document