Analysis on Distribution Trends of Affecting Red Tide Factors in the Beibu Gulf Inshore

2014 ◽  
Vol 675-677 ◽  
pp. 886-891
Author(s):  
Xin Xie ◽  
Long Hui Yang ◽  
Ping Xian ◽  
Qing Hua Jiang

Analysis on distribution trends of affecting red tide factors in the Beibu Gulf inshore based on data were monitored by automatic water quality monitoring network in 2011 and 2013, providing the scientific basis for preventing disasters and reducing damages of the red tide. Results showed that, average water temperature of Beibu Gulf are maintained in 21.5 °C ~27 °C in two years, the same station maximum temperature difference is 2.72 °C, and is gradually increased since West to East and rose yearly; pH are maintained in 7.8~8.3, are partial alkaline and relative compared stable, then pH of enclosed sea are below offshore waters, which in pH interval of red tide easy outbreak, existing high risk. DO concentration are between 6.3~7.7mg/L, does not have the foundation of extensive outbreak red tides. Lower percentage of DO in enclosed sea and with less material flux in offshore waters, so enclosed sea are high-incidence areas. Chlorophyll concentration in 2013 are almost lower than 2011, and smaller fluctuations. The environmental capacity of the waters in the Beibu Gulf is getting saturated; therefore, it should closely monitor water temperature, pH, and DO and chlorophyll concentration for predicting red tide.

2021 ◽  
Vol 80 (2) ◽  
Author(s):  
Iván Alejandro Meza-Matty ◽  
Gorgonio Ruiz-Campos ◽  
Luis Walter Daesslé ◽  
Arturo Ruiz-Luna ◽  
Álvaro Alberto López-Lambraño ◽  
...  

The present study measured the daily, seasonal, and annual variability of the water temperature of streams in which the endemic rainbow trout, Oncorhynchus mykiss nelsoni, is distributed on the western slope of the Sierra San Pedro Mártir, Baja California, Mexico, between 1996 and 2019. The seasonal thermal interval and daily duration of summer temperatures above the thermal threshold for this trout subspecies (≥ 28°C) were determined in streams at different elevations (553, 1,220, and 2,080 masl, or meters above sea level). Temperatures ≥ 28°C were recorded at the study site on the stream with the lowest elevation (San Antonio de Murillos Creek) over an accumulated 365 h between June and September 2014, with the maximum temperature recorded there, 30.66 °C, making it the site most vulnerable to climate change. At the San Antonio de Murillos Creek, the average water temperature predicted by three models (GFDL R30, HadCM3, and Mote) for the year 2025 would be a non-lethal temperature, < 28 °C, for trout at a minimum elevation of 491-511 masl, while this was predicted to be 545-701 masl for the year 2050. Predicted hourly water temperatures of 28°C (non-lethal) may occur at minimum elevations of 868-898 masl in 2025 and at 908-1028 masl in 2050, reducing a 21-23% and 23-31% its current altitudinal distribution range, respectively, thus avoiding its presence at the type locality (San Antonio de Murillos).


2021 ◽  
Vol 13 (2) ◽  
pp. 323
Author(s):  
Liang Chen ◽  
Xuelei Wang ◽  
Xiaobin Cai ◽  
Chao Yang ◽  
Xiaorong Lu

Rapid urbanization greatly alters land surface vegetation cover and heat distribution, leading to the development of the urban heat island (UHI) effect and seriously affecting the healthy development of cities and the comfort of living. As an indicator of urban health and livability, monitoring the distribution of land surface temperature (LST) and discovering its main impacting factors are receiving increasing attention in the effort to develop cities more sustainably. In this study, we analyzed the spatial distribution patterns of LST of the city of Wuhan, China, from 2013 to 2019. We detected hot and cold poles in four seasons through clustering and outlier analysis (based on Anselin local Moran’s I) of LST. Furthermore, we introduced the geographical detector model to quantify the impact of six physical and socio-economic factors, including the digital elevation model (DEM), index-based built-up index (IBI), modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), population, and Gross Domestic Product (GDP) on the LST distribution of Wuhan. Finally, to identify the influence of land cover on temperature, the LST of croplands, woodlands, grasslands, and built-up areas was analyzed. The results showed that low temperatures are mainly distributed over water and woodland areas, followed by grasslands; high temperatures are mainly concentrated over built-up areas. The maximum temperature difference between land covers occurs in spring and summer, while this difference can be ignored in winter. MNDWI, IBI, and NDVI are the key driving factors of the thermal values change in Wuhan, especially of their interaction. We found that the temperature of water area and urban green space (woodlands and grasslands) tends to be 5.4 °C and 2.6 °C lower than that of built-up areas. Our research results can contribute to the urban planning and urban greening of Wuhan and promote the healthy and sustainable development of the city.


2021 ◽  
Vol 7 (2) ◽  
pp. eabe4214
Author(s):  
Hae Jin Jeong ◽  
Hee Chang Kang ◽  
An Suk Lim ◽  
Se Hyeon Jang ◽  
Kitack Lee ◽  
...  

Microalgae fuel food webs and biogeochemical cycles of key elements in the ocean. What determines microalgal dominance in the ocean is a long-standing question. Red tide distribution data (spanning 1990 to 2019) show that mixotrophic dinoflagellates, capable of photosynthesis and predation together, were responsible for ~40% of the species forming red tides globally. Counterintuitively, the species with low or moderate growth rates but diverse prey including diatoms caused red tides globally. The ability of these dinoflagellates to trade off growth for prey diversity is another genetic factor critical to formation of red tides across diverse ocean conditions. This finding has profound implications for explaining the global dominance of particular microalgae, their key eco-evolutionary strategy, and prediction of harmful red tide outbreaks.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4447
Author(s):  
Jisun Shin ◽  
Young-Heon Jo ◽  
Joo-Hyung Ryu ◽  
Boo-Keun Khim ◽  
Soo Mee Kim

Red tides caused by Margalefidinium polykrikoides occur continuously along the southern coast of Korea, where there are many aquaculture cages, and therefore, prompt monitoring of bloom water is required to prevent considerable damage. Satellite-based ocean-color sensors are widely used for detecting red tide blooms, but their low spatial resolution restricts coastal observations. Contrarily, terrestrial sensors with a high spatial resolution are good candidate sensors, despite the lack of spectral resolution and bands for red tide detection. In this study, we developed a U-Net deep learning model for detecting M. polykrikoides blooms along the southern coast of Korea from PlanetScope imagery with a high spatial resolution of 3 m. The U-Net model was trained with four different datasets that were constructed with randomly or non-randomly chosen patches consisting of different ratios of red tide and non-red tide pixels. The qualitative and quantitative assessments of the conventional red tide index (RTI) and four U-Net models suggest that the U-Net model, which was trained with a dataset of non-randomly chosen patches including non-red tide patches, outperformed RTI in terms of sensitivity, precision, and F-measure level, accounting for an increase of 19.84%, 44.84%, and 28.52%, respectively. The M. polykrikoides map derived from U-Net provides the most reasonable red tide patterns in all water areas. Combining high spatial resolution images and deep learning approaches represents a good solution for the monitoring of red tides over coastal regions.


1984 ◽  
Vol 41 (12) ◽  
pp. 1803-1813 ◽  
Author(s):  
D. M. Søballe ◽  
R. W. Bachmann

The Des Moines River lost 65–75% of its algal standing crop (chlorophyll a) in passing through each of two impoundments (mean retention times 11 and 16 d), and chlorophyll concentrations within both impoundments were 50–90% below the predictions of empirical chlorophyll–nutrient models. Sedimentation of river-borne algae and light limitation within the impoundments were identified as major loss processes. A reduction in algal size from upstream to downstream in one reservoir paralleled the loss of algal biomass. Algal losses in each impoundment increased with both increasing retention time and water temperature so that chlorophyll concentration below the dams was uncoupled from the temperature and flow dependence seen in river reaches not influenced by impoundments. The reduction in riverine algal transport associated with reservoir transit was cumulative over the two-reservoir series; this reduction can be interpreted as a "reset" to river headwater conditions.


1992 ◽  
Vol 49 (11) ◽  
pp. 2281-2290 ◽  
Author(s):  
Richard D. Robarts ◽  
Marlene S. Evans ◽  
Michael T. Arts

Our data support empirical models indicating that algal productivity is low relative to total phosphorus (TP) levels in prairie lakes with high sulphate concentrations. Mean chlorophyll accounted for 91.1% of the variance in euphotic zone primary production (ΣA) in Humboldt Lake (total dissolved solids (TDS) = 3.3 g∙L−1; Zmax = 6 m), while TP, total dissolved phosphorus, and water temperature accounted for 82.7% of ΣA variance in Redberry Lake (TDS = 20.9 g∙L−1; Zmax = 17 m). The relative importance of these variables to ΣA resulted from biological, chemical, and physical differences of these lakes. Light usually penetrated to the bottom of Redberry Lake due to a mean euphotic zone (Zeu) chlorophyll of 1.7 mg∙m−3, while Humboldt Lake's mean Zeu was 3.4 m with a mean chlorophyll concentration of 62.6 mg∙m−3. Chlorophyll was the dominant factor correlated with light penetration in Humboldt Lake (r2 = 0.65) but not in Redberry Lake. Photosynthetic capacity was correlated (r2 = 0.72) with water temperature only in Redberry Lake. The mean ΣA was 57.1 and 230.2 mg C∙m−2∙h−1 for Redberry and Humboldt lakes, respectively.


Author(s):  
O.I. MARKOV

Numerical modelling thermal and thermoelectric processes in a branch of solid–state thermoelectric of Peltier cooler is performed, taking into account heat exchange by convection and radiation. The numerical calculation of the branch was carried out in the mode of the maximum temperature difference.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 373
Author(s):  
Sun Pil Kwon ◽  
Jae Jun Jung ◽  
Byoung Jo Jung

Background/Objectives: To improve a thermal load by increasing internal thermal effect of a building from direct solar radiation through an increase of glass windows.Methods/Statistical analysis: Through the establishment of test beds of the same size, the data of temperature, humidity, solar insolation and PMV of each test bed with or without external louver are acquired to analyze thermal environmental with the simulation.Findings: For the analysis of thermal environment, the amount of energy consumption has been analyzed through the simulation and the data of temperature, humidity, solar insolation and PMV have been acquired for the analysis. With the simulation, about 20% energy saving has been confirmed and the daily averages of temperature and humidity between 8AM to 7PM have been calculated to calculate the maximum temperature difference to be 9.4℃. The solar insolation between 9AM and 7PM was 300W/m2 or below.Improvements/Applications: The improvement of thermal effect with an external louver has been confirmed. It may be applied to the louver system to improve building thermal environment, awning to control direct solar radiation, blind to improve uniformity of illumination intensity toward building during daytime, external blind and ceiling louver system. 


Author(s):  
K. J. Jones ◽  
P. Ayres ◽  
A. M. Bullock ◽  
R. J. Roberts ◽  
P. Tett

Red tides of the naked dinoflagellate Gyrodinium aureolum Hulburt occurred in sealochs in the north of the Firth of Clyde, Scotland, during late September 1980. Greatestconcentrations of the organism were found in the top 1 m layer of the water column, which was stabilized, and probably also enriched with nutrients, by freshwater input fromland drainage. In addition vertical and horizontal concentration must be postulated toexplain Gyrodinium cell densities of 2 x to7 cells I"1 and chlorophyll concentrations of 2228 mg m“”3 near the shore at Otter Ferry, Loch Fyne.On 28 September 1980, water containing the red tide at Otter Ferry was unintentionally pumped into fish ponds at a shore-based salmon farm and resulted in the death, in one pond, of 3000 salmon each weighing about 1 kg and of 200–300 smolts in another when water was transferred to it from the affected pond. Pathological investigation of affected salmon showed that death was likely to have resulted from asphyxiation and osmotic shock as a result of extensive cellular damage to gills and guts. Results of mouse bioassays, using acidic and ether extracts of flesh and guts from affected salmon, suggest that necrotizing toxin(s) was associated with the cells of Gyrodinium aureolum during the bloom. The clinical signs exhibited by mice injected with toxin extracts were, however, unlike those caused by paralytic shellfish poison or toxins of the Gymnodinium breve type.


2021 ◽  
Vol 315 ◽  
pp. 3-9
Author(s):  
Yuan Gao ◽  
Li Hua Zhan ◽  
Hai Long Liao ◽  
Xue Ying Chen ◽  
Ming Hui Huang

The uniformity of temperature field distribution in creep aging process is very important to the forming accuracy of components. In this paper, the temperature field distribution of 2219 aluminum alloy tank cover during aging forming is simulated by using the finite element software FLUENT, and a two-stage heating process is proposed to reduce the temperature field distribution heterogeneity. The results show that the temperature difference of the tank cover is large in the single-stage heating process, and the maximum temperature difference is above 27°C,which seriously affects the forming accuracy of the tank cover. With two-stage heating process, the temperature difference in the first stage has almost no direct impact on the forming accuracy of the top cover. In the second stage, the temperature difference of the tank cover is controlled within 10°C, compared with the single-stage heating, the maximum temperature difference is reduced by more than 17°C. The two-stage heating effectively reduces the heterogeneity of the temperature field of the top cover. The research provides technical support for the precise thermal mechanical coupling of large-scale creep aging forming components.


Sign in / Sign up

Export Citation Format

Share Document