Optimization Research on Geometric Parameters of Scallop-Shaped Lattice Shells

2015 ◽  
Vol 724 ◽  
pp. 192-196
Author(s):  
Na Li ◽  
Ren An Chang ◽  
Wei Zong ◽  
Qi Hang Yu

<p>Free-form and bionic spatial shells are popular in the area of spatial structures. Scallop-shaped surface is the product of evolution and a kind of spatial shells that can satisfy the mechanical requirements. Based on the scallop-shaped lattice shells, this paper focused on the optimization of geometric parameters. The principle of minimum strain energy was applied to conclude the influence law of the geometric parameters on mechanical properties. Finally the optimal values of geometric parameters were obtained. The results show that the optimization of geometric parameters presents the integrated significance to improve scallop-shaped lattice shells.</p>

Author(s):  
J. J. Broek ◽  
A. Kooijman

The FF-TLOM (Free Form Thick Layered Object Manufacturing) technology is a Rapid Prototyping process based on flexible blade cutting of polystyrene foam. The heated blade is shaped by three parameters, which allows an infinite amount of minimum strain energy blade shapes with none, one or two inflexions. In the shaping domain stable and unstable blade shapes can exist. Stable shapes are defined as curves with none and one-inflexion and are applied for operational cutting of foam layers with the FF-TLOM technology. The tool motions are generated from the static tool poses and are calculated for a linear change of the flexible blade, when the cutting tool moves from one tool position to the next. The cutting blade is positioned to the foam slab with help of a point relative positioned on the flexible blade. The tool frame is positioned with a point fixed relatively to the tool frame. During the tool motions the blade curvature is changed and will introduce a shift of the half way point fixed on the blade (especially in the case of asymmetrical support inclinations and high curvature). Next the local displacement of the blade points in the bending plane of the blade due to blade shaping and tool pitching are quantified during the tool motions. These displacements induce an angle of attack of the blade in cutting direction, and will influence cutting speed and cutting accuracy. The quantification software is developed and will be used in the future for an overall prediction of the total tool curve displacements due to blade shaping, such as roll, pitch, yaw and linear positioning motions of the tool. A general rule for FF-TLOM cutting is minimization of all tool motions, which are not related to the forward cutting motion.


Author(s):  
J. J. Broek ◽  
A. Kooijman ◽  
A. de Smit ◽  
I. Horva´th

Free Form Thick Layered Object Manufacturing (FF-TLOM) technology is based on foam cutting with a curved heated flexible cutting blade. Three single parameters shape the flexible blade. An infinite amount of blade shapes can be selected. However, many of these shapes are not suitable for cutting. Blade shapes with less than two inflexions can be applied successfully. When two inflexions are involved the blade; more than one different stable blade shape can be realized. For tool path creation and cutting procedures the blade shape must be known. A 2-D calculation algorithm based on (Kallay, 1987) is used. The calculation result is a minimum strain energy curve of a prescribed length, which is represented by a chain of segments. The shape is unfolded by rotating each segment under conditions of total energy decrease until no improvements are achieved. In this paper the process parameters are analyzed for sensitivity and influence on the accuracy and conditions of the blade shaping process. An overview of these parameters is given and the accuracy, computing time and trustworthiness of the implemented algorithm is checked. Typical FF-TLOM process characteristics are considered for its influence on the blade shape The elastic energy of curves is presented for a complete range of blade shapes. Regions of bi-stable blade shapes are perceived based on more than one blade inflexion. Finally a selection is presented for those minimum strain curves, which are applicable for the FF-TLOM technology.


2020 ◽  
Vol 10 (22) ◽  
pp. 8055
Author(s):  
Sergey A. Stel’makh ◽  
Evgenii M. Shcherban’ ◽  
Anatolii I. Shuiskii ◽  
Al’bert Yu. Prokopov ◽  
Sergey M. Madatyan ◽  
...  

The paper studies the influence of the geometric parameters of the mixer on the mixing process, the construction of the mixing body, its location in the mixer bulk, and the mixer shape and geometry. The technique of calculating the power spent on mixing the foam concrete mixture is described. The effects of the ratio of the mixture height to the mixer diameter, the number and width of reflective partitions, and the shape of the conical part of the mixer on the homogeneity of the foam concrete mixture and the power consumption are considered. The optimal ratios of the foam concrete mixture height to the mixer diameter have been determined. Moreover, the optimal range of the ratios of the partition width to the mixer diameter has been established, in order to obtain a homogeneous foam concrete mixture throughout the volume with lower energy consumption. The optimal values of the angle of the mixer conical part for the preparation of a foam concrete mixture have been determined.


2004 ◽  
Vol 261-263 ◽  
pp. 75-80
Author(s):  
G.H. Nie ◽  
H. Xu

In this paper elastic stress field in an elliptic inhomogeneity embedded in orthotropic media due to non-elastic deformation is determined by the complex function method and the principle of minimum strain energy. Two complex parameters are expressed in a general form, which covers all characterizations of the degree of anisotropy for any ideal orthotropic elastic body. The stress acting on the long side of ellipse can be considered as a crack driving force and applied in failure and fatigue analysis of composites. For some special cases, the resulting solutions will reduce to the known results.


2018 ◽  
Vol 45 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Giuseppe Saccomandi

The mechanical properties of rubber-like materials have been offering an outstanding challenge to the solid mechanics community for a long time. The behaviour of such materials is quite difficult to predict because rubber self-organizes into mesoscopic physical structures that play a prominent role in determining their complex, history-dependent and strongly nonlinear response. In this framework one of the main problems is to find a functional form of the elastic strain-energy that best describes the experimental data in a mathematical feasible way. The aim of this paper is to give a survey of recent advances aimed at solving such a problem.


1991 ◽  
Vol 13 (4) ◽  
pp. 243-260 ◽  
Author(s):  
P. Gangli ◽  
J. A. Szpunar ◽  
Sugondo

A series of experiments were made determining textural, microstructural, and mechanical properties in cold drawn, and spheroidization heat treated low-C steel wires (AISI-1018 and 1033 grades). It was found that texture exerted a significant influence on the mechanical properties, while microstructure had a comparable influence.Mechanical properties are represented by yield strength (YS), ultimate compressive strength (UCS) and by homogeneous strain energy (EHOM), defined by the integral of stress up to uniform elongation. Textural properties are represented by the Taylor-factor, M, the R-value, and by the maximum of the orientation distribution function (ODFMAX). Micro-structural properties are treated with the help of the aspect ratio parameter (1/√AR), where AR is the grain aspect ratio (length to ellipsoidal width), the grain size parameter (1/√D), and the mean free path between second phase spheroidized cementites √N.For cold drawn steel wires, homogeneous strain energy (EHOM) is well correlated to (1/√AR) and (ODFMAX). Yield strength, on the other hand, appears to be chiefly influenced by the aspect ratio parameter, thus here ODFMAX exerts less influence. The yield strength (YS) of annealed, spheroidization treated low-C wires are equally influenced by the grain size parameter (1/√D), the mean distance between spherulites (√N) and by ODFMAX.The textures of the cold drawn wires could be well described by the 〈110〉 fibre parallel to wire axis, and by the 〈111〉 fibre normal to wire axis. The annealed wires, while also featuring these two fibres, displayed a distinct {111}〈110〉single orientation.


1976 ◽  
Vol 98 (4) ◽  
pp. 1370-1374 ◽  
Author(s):  
A. G. McLean ◽  
P. C. Arnold

Jenike, et al. [1] have presented a minimum strain energy theory to predict cylinder flow pressures in mass-flow bins. The complete variation of strain energy pressures is depicted by bounds requiring considerable numerical effort to develop for a specific cylinder geometry. Design charts are presented, but these are available for only two circular cylinder geometries. This paper summarizes and clarifies the minimum strain energy theory for predicting cylinder flow pressures. A single bound approximation which allows the magnitude of the peak flow pressure to be determined for both axisymmetric and plane flow cylinders is presented. This peak pressure may also be estimated by a single calculation of strain energy pressure. The usefulness and accuracy of these procedures are illustrated by reworking the example presented by Jenike, et al. [1].


1994 ◽  
Vol 47 (1S) ◽  
pp. S10-S17 ◽  
Author(s):  
Jin H. Huang ◽  
T. Mura

A method drawing from variational method is presented for the purpose of investigating the behavior of inclusions and inhomogeneities embedded in composite materials. The extended Hamilton’s principle is applied to solve many problems pertaining to composite materials such as constitutive equations, fracture mechanics, dislocation theory, overall elastic moduli, work hardening and sliding inclusions. Especially, elastic fields of sliding inclusions and workhardening rate of composite materials are presented in closed forms. For sliding inclusion problems, the sliding is modeled by adding the Somigliana dislocations along a matrix-inclusion interface. Exact formula are exploited for both Burgers vector and the disturbances in stress and strain due to sliding. The resulting expressions are obtained by utilizing the principle of minimum strain energy. Finally, explicit expressions are obtained for work-hardening rate of composite materials. It is verified that the work-hardening rate and yielding stress are independent on the size of inclusions but are dependent on the shape and the volume fraction of inclusions.


2015 ◽  
Vol 1127 ◽  
pp. 113-119 ◽  
Author(s):  
Leszek Adam Dobrzański ◽  
Wojciech Borek ◽  
Janusz Mazurkiewicz

The aim of this paper is to determine the high-manganese austenite propensity to twinning induced by the cold working and its effect on structure and mechanical properties, and especially the strain energy per unit volume of new-developed high-manganese Fe – Mn – (Al, Si) investigated steel, containing about 24,5 % of manganese, 1% of silicon, 3 % of aluminium and microadditions Nb and Ti with various structures after their heat- and thermo-mechanical treatments. The new-developed high-manganese Fe – Mn – (Al, Si) steel provide an extensive potential for automotive industries through exhibiting the twinning induced plasticity (TWIP) mechanisms. TWIP steel not only show excellent strength, but also have excellent formability due to twinning, thereby leading to excellent combination of strength, ductility, and formability over conventional dual phase steels or transformation induced plasticity (TRIP) steels. Results obtained for high-manganese austenitic steel with the properly formed structure and properties in the thermo-mechanical processes indicate the possibility and purposefulness of their employment for constructional elements of vehicles, especially of the passenger cars to take advantage of the significant growth of their strain energy per unit volume which guarantee reserve of plasticity in the zones of controlled energy absorption during possible collision resulting from activation of twinning induced by the cold working as the fracture counteraction factor, which may result in significant growth of the passive safety of these vehicles' passengers.


Sign in / Sign up

Export Citation Format

Share Document